Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Hardness of Meaningful Local Guarantees in Nonsmooth Nonconvex Optimization (2409.10323v1)

Published 16 Sep 2024 in math.OC and cs.LG

Abstract: We study the oracle complexity of nonsmooth nonconvex optimization, with the algorithm assumed to have access only to local function information. It has been shown by Davis, Drusvyatskiy, and Jiang (2023) that for nonsmooth Lipschitz functions satisfying certain regularity and strictness conditions, perturbed gradient descent converges to local minimizers asymptotically. Motivated by this result and by other recent algorithmic advances in nonconvex nonsmooth optimization concerning Goldstein stationarity, we consider the question of obtaining a non-asymptotic rate of convergence to local minima for this problem class. We provide the following negative answer to this question: Local algorithms acting on regular Lipschitz functions cannot, in the worst case, provide meaningful local guarantees in terms of function value in sub-exponential time, even when all near-stationary points are global minima. This sharply contrasts with the smooth setting, for which it is well-known that standard gradient methods can do so in a dimension-independent rate. Our result complements the rich body of work in the theoretical computer science literature that provide hardness results conditional on conjectures such as $\mathsf{P}\neq\mathsf{NP}$ or cryptographic assumptions, in that ours holds unconditional of any such assumptions.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com