Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Complexity of Constrained Min-Max Optimization (2009.09623v1)

Published 21 Sep 2020 in cs.CC, cs.LG, and math.OC

Abstract: Despite its important applications in Machine Learning, min-max optimization of nonconvex-nonconcave objectives remains elusive. Not only are there no known first-order methods converging even to approximate local min-max points, but the computational complexity of identifying them is also poorly understood. In this paper, we provide a characterization of the computational complexity of the problem, as well as of the limitations of first-order methods in constrained min-max optimization problems with nonconvex-nonconcave objectives and linear constraints. As a warm-up, we show that, even when the objective is a Lipschitz and smooth differentiable function, deciding whether a min-max point exists, in fact even deciding whether an approximate min-max point exists, is NP-hard. More importantly, we show that an approximate local min-max point of large enough approximation is guaranteed to exist, but finding one such point is PPAD-complete. The same is true of computing an approximate fixed point of Gradient Descent/Ascent. An important byproduct of our proof is to establish an unconditional hardness result in the Nemirovsky-Yudin model. We show that, given oracle access to some function $f : P \to [-1, 1]$ and its gradient $\nabla f$, where $P \subseteq [0, 1]d$ is a known convex polytope, every algorithm that finds a $\varepsilon$-approximate local min-max point needs to make a number of queries that is exponential in at least one of $1/\varepsilon$, $L$, $G$, or $d$, where $L$ and $G$ are respectively the smoothness and Lipschitzness of $f$ and $d$ is the dimension. This comes in sharp contrast to minimization problems, where finding approximate local minima in the same setting can be done with Projected Gradient Descent using $O(L/\varepsilon)$ many queries. Our result is the first to show an exponential separation between these two fundamental optimization problems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Constantinos Daskalakis (111 papers)
  2. Stratis Skoulakis (27 papers)
  3. Manolis Zampetakis (45 papers)
Citations (133)

Summary

We haven't generated a summary for this paper yet.