Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

BAFNet: Bilateral Attention Fusion Network for Lightweight Semantic Segmentation of Urban Remote Sensing Images (2409.10269v1)

Published 16 Sep 2024 in cs.CV and cs.LG

Abstract: Large-scale semantic segmentation networks often achieve high performance, while their application can be challenging when faced with limited sample sizes and computational resources. In scenarios with restricted network size and computational complexity, models encounter significant challenges in capturing long-range dependencies and recovering detailed information in images. We propose a lightweight bilateral semantic segmentation network called bilateral attention fusion network (BAFNet) to efficiently segment high-resolution urban remote sensing images. The model consists of two paths, namely dependency path and remote-local path. The dependency path utilizes large kernel attention to acquire long-range dependencies in the image. Besides, multi-scale local attention and efficient remote attention are designed to construct remote-local path. Finally, a feature aggregation module is designed to effectively utilize the different features of the two paths. Our proposed method was tested on public high-resolution urban remote sensing datasets Vaihingen and Potsdam, with mIoU reaching 83.20% and 86.53%, respectively. As a lightweight semantic segmentation model, BAFNet not only outperforms advanced lightweight models in accuracy but also demonstrates comparable performance to non-lightweight state-of-the-art methods on two datasets, despite a tenfold variance in floating-point operations and a fifteenfold difference in network parameters.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)