Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 139 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Generic and ML Workloads in an HPC Datacenter: Node Energy, Job Failures, and Node-Job Analysis (2409.08949v1)

Published 13 Sep 2024 in cs.DC and cs.AR

Abstract: HPC datacenters offer a backbone to the modern digital society. Increasingly, they run Machine Learning (ML) jobs next to generic, compute-intensive workloads, supporting science, business, and other decision-making processes. However, understanding how ML jobs impact the operation of HPC datacenters, relative to generic jobs, remains desirable but understudied. In this work, we leverage long-term operational data, collected from a national-scale production HPC datacenter, and statistically compare how ML and generic jobs can impact the performance, failures, resource utilization, and energy consumption of HPC datacenters. Our study provides key insights, e.g., ML-related power usage causes GPU nodes to run into temperature limitations, median/mean runtime and failure rates are higher for ML jobs than for generic jobs, both ML and generic jobs exhibit highly variable arrival processes and resource demands, significant amounts of energy are spent on unsuccessfully terminating jobs, and concurrent jobs tend to terminate in the same state. We open-source our cleaned-up data traces on Zenodo (https://doi.org/10.5281/zenodo.13685426), and provide our analysis toolkit as software hosted on GitHub (https://github.com/atlarge-research/2024-icpads-hpc-workload-characterization). This study offers multiple benefits for data center administrators, who can improve operational efficiency, and for researchers, who can further improve system designs, scheduling techniques, etc.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube