Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 480 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

Domain-Invariant Representation Learning of Bird Sounds (2409.08589v6)

Published 13 Sep 2024 in cs.SD and eess.AS

Abstract: Passive acoustic monitoring (PAM) is crucial for bioacoustic research, enabling non-invasive species tracking and biodiversity monitoring. Citizen science platforms provide large annotated datasets from focal recordings, where the target species is intentionally recorded. However, PAM requires monitoring in passive soundscapes, creating a domain shift between focal and passive recordings, challenging deep learning models trained on focal recordings. To address domain generalization, we leverage supervised contrastive learning by enforcing domain invariance across same-class examples from different domains. Additionally, we propose ProtoCLR, an alternative to SupCon loss which reduces the computational complexity by comparing examples to class prototypes instead of pairwise comparisons. We conduct few-shot classification based on BIRB, a large-scale bird sound benchmark to assess pre-trained bioacoustic models. Our findings suggest that ProtoCLR is a better alternative to SupCon.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.