Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 181 tok/s Pro
2000 character limit reached

Revisiting Accurate Geometry for Morse-Smale Complexes (2409.05532v1)

Published 9 Sep 2024 in cs.CG

Abstract: The Morse-Smale complex is a standard tool in visual data analysis. The classic definition is based on a continuous view of the gradient of a scalar function where its zeros are the critical points. These points are connected via gradient curves and surfaces emanating from saddle points, known as separatrices. In a discrete setting, the Morse-Smale complex is commonly extracted by constructing a combinatorial gradient assuming the steepest descent direction. Previous works have shown that this method results in a geometric embedding of the separatrices that can be fundamentally different from those in the continuous case. To achieve a similar embedding, different approaches for constructing a combinatorial gradient were proposed. In this paper, we show that these approaches generate a different topology, i.e., the connectivity between critical points changes. Additionally, we demonstrate that the steepest descent method can compute topologically and geometrically accurate Morse-Smale complexes when applied to certain types of grids. Based on these observations, we suggest a method to attain both geometric and topological accuracy for the Morse-Smale complex of data sampled on a uniform grid.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.