Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Spectral invariants and equivariant monopole Floer homology for rational homology three-spheres (2409.04954v2)

Published 8 Sep 2024 in math.GT and math.DG

Abstract: In this paper, we study a model for $S1$-equivariant monopole Floer homology for rational homology three-spheres via a homological device called $\mathcal{S}$-complex. Using the Chern-Simons-Dirac functional, we define an $\mathbf{R}$-filtration on the (equivariant) complex of monopole Floer homology $HM$. This $\mathbf{R}$-filtration fits $HM$ into a persistent homology theory, from which one can define a numerical quantity called the spectral invariant $\rho$. The spectral invariant $\rho$ is tied with the geometry of the underlying manifold. The main result of the papers shows that $\rho$ provides an obstruction to the existence of positive scalar curvature metric on a ribbon homology cobordism.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 5 likes.