Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Enhancing Quantum Security over Federated Learning via Post-Quantum Cryptography (2409.04637v1)

Published 6 Sep 2024 in quant-ph, cs.AI, cs.CR, and cs.LG

Abstract: Federated learning (FL) has become one of the standard approaches for deploying machine learning models on edge devices, where private training data are distributed across clients, and a shared model is learned by aggregating locally computed updates from each client. While this paradigm enhances communication efficiency by only requiring updates at the end of each training epoch, the transmitted model updates remain vulnerable to malicious tampering, posing risks to the integrity of the global model. Although current digital signature algorithms can protect these communicated model updates, they fail to ensure quantum security in the era of large-scale quantum computing. Fortunately, various post-quantum cryptography algorithms have been developed to address this vulnerability, especially the three NIST-standardized algorithms - Dilithium, FALCON, and SPHINCS+. In this work, we empirically investigate the impact of these three NIST-standardized PQC algorithms for digital signatures within the FL procedure, covering a wide range of models, tasks, and FL settings. Our results indicate that Dilithium stands out as the most efficient PQC algorithm for digital signature in federated learning. Additionally, we offer an in-depth discussion of the implications of our findings and potential directions for future research.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube