Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 388 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Cumulants in rectangular finite free probability and beta-deformed singular values (2409.04305v1)

Published 6 Sep 2024 in math.CO and math.PR

Abstract: Motivated by the $(q,\gamma)$-cumulants, introduced by Xu [arXiv:2303.13812] to study $\beta$-deformed singular values of random matrices, we define the $(n,d)$-rectangular cumulants for polynomials of degree $d$ and prove several moment-cumulant formulas by elementary algebraic manipulations; the proof naturally leads to quantum analogues of the formulas. We further show that the $(n,d)$-rectangular cumulants linearize the $(n,d)$-rectangular convolution from Finite Free Probability and that they converge to the $q$-rectangular free cumulants from Free Probability in the regime where $d\to\infty$, $1+n/d\to q\in[1,\infty)$. As an application, we employ our formulas to study limits of symmetric empirical root distributions of sequences of polynomials with nonnegative roots. One of our results is akin to a theorem of Kabluchko [arXiv:2203.05533] and shows that applying the operator $\exp(-\frac{s2}{n}x{-n}D_xx{n+1}D_x)$, where $s>0$, asymptotically amounts to taking the rectangular free convolution with the rectangular Gaussian distribution of variance $qs2/(q-1)$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.