Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s
GPT-5 High 12 tok/s Pro
GPT-4o 96 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 217 tok/s Pro
2000 character limit reached

A Hybrid Vectorized Merge Sort on ARM NEON (2409.03970v1)

Published 6 Sep 2024 in cs.DC and cs.DS

Abstract: Sorting algorithms are the most extensively researched topics in computer science and serve for numerous practical applications. Although various sorts have been proposed for efficiency, different architectures offer distinct flavors to the implementation of parallel sorting. In this paper, we propose a hybrid vectorized merge sort on ARM NEON, named NEON Merge Sort for short (NEON-MS). In detail, according to the granted register functions, we first identify the optimal register number to avoid the register-to-memory access, due to the write-back of intermediate outcomes. More importantly, following the generic merge sort framework that primarily uses sorting network for column sort and merging networks for three types of vectorized merge, we further improve their structures for high efficiency in an unified asymmetry way: 1) it makes the optimal sorting networks with few comparators become possible; 2) hybrid implementation of both serial and vectorized merges incurs the pipeline with merge instructions highly interleaved. Experiments on a single FT2000+ core show that NEON-MS is 3.8 and 2.1 times faster than std::sort and boost::block_sort, respectively, on average. Additionally, as compared to the parallel version of the latter, NEON-MS gains an average speedup of 1.25.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com