Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Comparative Study of Offline Models and Online LLMs in Fake News Detection (2409.03067v1)

Published 4 Sep 2024 in cs.SI

Abstract: Fake news detection remains a critical challenge in today's rapidly evolving digital landscape, where misinformation can spread faster than ever before. Traditional fake news detection models often rely on static datasets and auxiliary information, such as metadata or social media interactions, which limits their adaptability to real-time scenarios. Recent advancements in LLMs have demonstrated significant potential in addressing these challenges due to their extensive pre-trained knowledge and ability to analyze textual content without relying on auxiliary data. However, many of these LLM-based approaches are still rooted in static datasets, with limited exploration into their real-time processing capabilities. This paper presents a systematic evaluation of both traditional offline models and state-of-the-art LLMs for real-time fake news detection. We demonstrate the limitations of existing offline models, including their inability to adapt to dynamic misinformation patterns. Furthermore, we show that newer LLM models with online capabilities, such as GPT-4, Claude, and Gemini, are better suited for detecting emerging fake news in real-time contexts. Our findings emphasize the importance of transitioning from offline to online LLM models for real-time fake news detection. Additionally, the public accessibility of LLMs enhances their scalability and democratizes the tools needed to combat misinformation. By leveraging real-time data, our work marks a significant step toward more adaptive, effective, and scalable fake news detection systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. Reuters Institute for the Study of Journalism, “Digital news report 2023,” 2023, accessed: 2024-08-06. [Online]. Available: https://www.digitalnewsreport.org/
  2. B. Hu, Q. Sheng, J. Cao, Y. Shi, Y. Li, D. Wang, and P. Qi, “Bad actor, good advisor: Exploring the role of large language models in fake news detection,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38, no. 20, 2024, pp. 22 105–22 113.
  3. X. Li, Y. Zhang, and E. C. Malthouse, “Large language model agent for fake news detection,” 2024. [Online]. Available: https://arxiv.org/abs/2405.01593
  4. D. Boissonneault and E. Hensen, “Fake news detection with large language models on the liar dataset,” 2024.
  5. C. Castillo, M. Mendoza, and B. Poblete, “Information credibility on twitter,” in Proceedings of the 20th international conference on World wide web, 2011, pp. 675–684.
  6. V. L. Rubin, N. J. Conroy, and Y. Chen, “Towards news verification: Deception detection methods for news discourse,” in Hawaii international conference on system sciences, 2015, pp. 5–8.
  7. B. Horne and S. Adali, “This just in: Fake news packs a lot in title, uses simpler, repetitive content in text body, more similar to satire than real news,” in Proceedings of the international AAAI conference on web and social media, vol. 11, no. 1, 2017, pp. 759–766.
  8. X. Zhou, A. Jain, V. V. Phoha, and R. Zafarani, “Fake news early detection: A theory-driven model,” Digital Threats: Research and Practice, vol. 1, no. 2, pp. 1–25, 2020.
  9. W. Y. Wang, “” liar, liar pants on fire”: A new benchmark dataset for fake news detection,” arXiv preprint arXiv:1705.00648, 2017.
  10. R. K. Kaliyar, A. Goswami, and P. Narang, “Fakebert: Fake news detection in social media with a bert-based deep learning approach,” Multimedia tools and applications, vol. 80, no. 8, pp. 11 765–11 788, 2021.
  11. S. Ni, J. Li, and H.-Y. Kao, “Mvan: Multi-view attention networks for fake news detection on social media,” IEEE Access, vol. 9, pp. 106 907–106 917, 2021.
  12. N. Ruchansky, S. Seo, and Y. Liu, “Csi: A hybrid deep model for fake news detection,” in Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, 2017, pp. 797–806.
  13. O. Ajao, D. Bhowmik, and S. Zargari, “Fake news identification on twitter with hybrid cnn and rnn models,” in Proceedings of the 9th international conference on social media and society, 2018, pp. 226–230.
  14. J. A. Nasir, O. S. Khan, and I. Varlamis, “Fake news detection: A hybrid cnn-rnn based deep learning approach,” International Journal of Information Management Data Insights, vol. 1, no. 1, p. 100007, 2021.
  15. Y. Wang, F. Ma, Z. Jin, Y. Yuan, G. Xun, K. Jha, L. Su, and J. Gao, “Eann: Event adversarial neural networks for multi-modal fake news detection,” in Proceedings of the 24th acm sigkdd international conference on knowledge discovery & data mining, 2018, pp. 849–857.
  16. D. Khattar, J. S. Goud, M. Gupta, and V. Varma, “Mvae: Multimodal variational autoencoder for fake news detection,” in The world wide web conference, 2019, pp. 2915–2921.
  17. A. Giachanou, G. Zhang, and P. Rosso, “Multimodal multi-image fake news detection,” in 2020 IEEE 7th international conference on data science and advanced analytics (DSAA).   IEEE, 2020, pp. 647–654.
  18. I. Segura-Bedmar and S. Alonso-Bartolome, “Multimodal fake news detection,” Information, vol. 13, no. 6, p. 284, 2022.
  19. R. Zellers, A. Holtzman, H. Rashkin, Y. Bisk, A. Farhadi, F. Roesner, and Y. Choi, “Defending against neural fake news,” Advances in neural information processing systems, vol. 32, 2019.
  20. K. Popat, S. Mukherjee, A. Yates, and G. Weikum, “Declare: Debunking fake news and false claims using evidence-aware deep learning,” arXiv preprint arXiv:1809.06416, 2018.
  21. K. Shu, L. Cui, S. Wang, D. Lee, and H. Liu, “defend: Explainable fake news detection,” in Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, 2019, pp. 395–405.
  22. X. Zhang, J. Cao, X. Li, Q. Sheng, L. Zhong, and K. Shu, “Mining dual emotion for fake news detection,” in Proceedings of the Web Conference 2021, ser. WWW ’21.   New York, NY, USA: Association for Computing Machinery, 2021, p. 3465–3476. [Online]. Available: https://doi.org/10.1145/3442381.3450004
  23. X. Zhang and W. Gao, “Towards LLM-based fact verification on news claims with a hierarchical step-by-step prompting method,” in Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (Volume 1: Long Papers), J. C. Park, Y. Arase, B. Hu, W. Lu, D. Wijaya, A. Purwarianti, and A. A. Krisnadhi, Eds.   Nusa Dua, Bali: Association for Computational Linguistics, Nov. 2023, pp. 996–1011. [Online]. Available: https://aclanthology.org/2023.ijcnlp-main.64
  24. M. K. Singh, J. Ahmed, M. A. Alam, K. K. Raghuvanshi, and S. Kumar, “A comprehensive review on automatic detection of fake news on social media,” Multimedia Tools and Applications, vol. 83, no. 16, pp. 47 319–47 352, 2024.
  25. Q. Nan, J. Cao, Y. Zhu, Y. Wang, and J. Li, “Mdfend: Multi-domain fake news detection,” in Proceedings of the 30th ACM International Conference on Information & Knowledge Management, 2021, pp. 3343–3347.
  26. A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur, A. Schelten, A. Yang, A. Fan et al., “The llama 3 herd of models,” arXiv preprint arXiv:2407.21783, 2024.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Ruoyu Xu (4 papers)
  2. Gaoxiang Li (12 papers)