Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A parameterization of anisotropic Gaussian fields with penalized complexity priors (2409.02331v3)

Published 3 Sep 2024 in stat.ME

Abstract: Gaussian random fields (GFs) are fundamental tools in spatial modeling and can be represented flexibly and efficiently as solutions to stochastic partial differential equations (SPDEs). The SPDEs depend on specific parameters, which enforce various field behaviors and can be estimated using Bayesian inference. However, the likelihood typically only provides limited insights into the covariance structure under in-fill asymptotics. In response, it is essential to leverage priors to achieve appropriate, meaningful covariance structures in the posterior. This study introduces a smooth, invertible parameterization of the correlation length and diffusion matrix of an anisotropic GF and constructs penalized complexity (PC) priors for the model when the parameters are constant in space. The formulated prior is weakly informative, effectively penalizing complexity by pushing the correlation range toward infinity and the anisotropy to zero.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.