Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Generative Principal Component Regression via Variational Inference (2409.02327v1)

Published 3 Sep 2024 in stat.ML and cs.LG

Abstract: The ability to manipulate complex systems, such as the brain, to modify specific outcomes has far-reaching implications, particularly in the treatment of psychiatric disorders. One approach to designing appropriate manipulations is to target key features of predictive models. While generative latent variable models, such as probabilistic principal component analysis (PPCA), is a powerful tool for identifying targets, they struggle incorporating information relevant to low-variance outcomes into the latent space. When stimulation targets are designed on the latent space in such a scenario, the intervention can be suboptimal with minimal efficacy. To address this problem, we develop a novel objective based on supervised variational autoencoders (SVAEs) that enforces such information is represented in the latent space. The novel objective can be used with linear models, such as PPCA, which we refer to as generative principal component regression (gPCR). We show in simulations that gPCR dramatically improves target selection in manipulation as compared to standard PCR and SVAEs. As part of these simulations, we develop a metric for detecting when relevant information is not properly incorporated into the loadings. We then show in two neural datasets related to stress and social behavior in which gPCR dramatically outperforms PCR in predictive performance and that SVAEs exhibit low incorporation of relevant information into the loadings. Overall, this work suggests that our method significantly improves target selection for manipulation using latent variable models over competitor inference schemes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. J. Regier, A. Miller, J. McAuliffe, R. Adams, M. Hoffman, D. Lang, D. Schlegel, and M. Prabhat, “Celeste: Variational inference for a generative model of astronomical images,” in International Conference on Machine Learning.   PMLR, 2015, pp. 2095–2103.
  2. R. Lopez, J. Regier, M. B. Cole, M. I. Jordan, and N. Yosef, “Deep generative modeling for single-cell transcriptomics,” Nature methods, vol. 15, no. 12, pp. 1053–1058, 2018.
  3. J. Wang, D. Agarwal, M. Huang, G. Hu, Z. Zhou, C. Ye, and N. R. Zhang, “Data denoising with transfer learning in single-cell transcriptomics,” Nature methods, vol. 16, no. 9, pp. 875–878, 2019.
  4. E. A. Erosheva, S. E. Fienberg, and C. Joutard, “Describing disability through individual-level mixture models for multivariate binary data,” The annals of applied statistics, vol. 1, no. 2, p. 346, 2007.
  5. S. R. Cooper, J. J. Jackson, D. M. Barch, and T. S. Braver, “Neuroimaging of individual differences: A latent variable modeling perspective,” Neuroscience & Biobehavioral Reviews, vol. 98, pp. 29–46, 2019.
  6. A. K. Porbadnigk, N. Görnitz, C. Sannelli, A. Binder, M. Braun, M. Kloft, and K.-R. Müller, “Extracting latent brain states—towards true labels in cognitive neuroscience experiments,” NeuroImage, vol. 120, pp. 225–253, 2015.
  7. D. S. Bassett and O. Sporns, “Network neuroscience,” Nature neuroscience, vol. 20, no. 3, pp. 353–364, 2017.
  8. J. P. Cunningham and M. Y. Byron, “Dimensionality reduction for large-scale neural recordings,” Nature neuroscience, vol. 17, no. 11, pp. 1500–1509, 2014.
  9. R. Hultman, K. Ulrich, B. D. Sachs, C. Blount, D. E. Carlson, N. Ndubuizu, R. C. Bagot, E. M. Parise, M. A. T. Vu, N. M. Gallagher, J. Wang, A. J. Silva, K. Deisseroth, S. D. Mague, M. G. Caron, E. J. Nestler, L. Carin, and K. Dzirasa, “Brain-wide Electrical Spatiotemporal Dynamics Encode Depression Vulnerability,” Cell, vol. 173, no. 1, pp. 166–180, 2018.
  10. S. Fong, K. Pabis, D. Latumalea, N. Dugersuren, M. Unfried, N. Tolwinski, B. Kennedy, and J. Gruber, “Principal component-based clinical aging clocks identify signatures of healthy aging and targets for clinical intervention,” Nature Aging, pp. 1–16, 2024.
  11. D. Carlson, L. K. David, N. M. Gallagher, M.-A. T. Vu, M. Shirley, R. Hultman, J. Wang, C. Burrus, C. A. McClung, S. Kumar et al., “Dynamically timed stimulation of corticolimbic circuitry activates a stress-compensatory pathway,” Biological psychiatry, vol. 82, no. 12, pp. 904–913, 2017.
  12. S. D. Mague, A. Talbot, C. Blount, K. K. Walder-Christensen, L. J. Duffney, E. Adamson, A. L. Bey, N. Ndubuizu, G. E. Thomas, D. N. Hughes et al., “Brain-wide electrical dynamics encode individual appetitive social behavior,” Neuron, vol. 110, no. 10, pp. 1728–1741, 2022.
  13. K. W. Scangos, A. N. Khambhati, P. M. Daly, G. S. Makhoul, L. P. Sugrue, H. Zamanian, T. X. Liu, V. R. Rao, K. K. Sellers, H. E. Dawes et al., “Closed-loop neuromodulation in an individual with treatment-resistant depression,” Nature medicine, vol. 27, no. 10, pp. 1696–1700, 2021.
  14. Y. S. Grossman, A. Talbot, N. M. Gallagher, G. E. Thomas, A. J. Fink, K. K. Walder-Christensen, S. J. Russo, D. E. Carlson, and K. Dzirasa, “Brain-wide oscillatory network encodes an aggressive internal state,” bioRxiv, 2022.
  15. D. N. Hughes, M. H. Klein, K. K. Walder-Christensen, G. E. Thomas, Y. Grossman, D. Waters, A. E. Matthews, W. E. Carson, Y. Filali, M. Tsyglakova et al., “A widespread electrical brain network encodes anxiety in health and depressive states,” bioRxiv, 2024.
  16. P. R. Hahn, C. M. Carvalho, and S. Mukherjee, “Partial factor modeling: predictor-dependent shrinkage for linear regression,” Journal of the American Statistical Association, vol. 108, no. 503, pp. 999–1008, 2013.
  17. I. T. Jolliffe, “A note on the use of principal components in regression,” Journal of the Royal Statistical Society Series C: Applied Statistics, vol. 31, no. 3, pp. 300–303, 1982.
  18. L. C. McCandless, I. J. Douglas, S. J. Evans, and L. Smeeth, “Cutting feedback in bayesian regression adjustment for the propensity score,” The international journal of biostatistics, vol. 6, no. 2, 2010.
  19. J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Supervised Dictionary Learning,” in Advances in neural information processing systems, 2009, pp. 1033–1040.
  20. D. P. Kingma, D. J. Rezende, S. Mohamed, and M. Welling, “Semi-supervised learning with deep generative models,” in Advances in Neural Information Processing Systems, 2014, pp. 3581–3589.
  21. A. Talbot, D. Dunson, K. Dzirasa, and D. Carlson, “Estimating a brain network predictive of stress and genotype with supervised autoencoders,” Journal of the Royal Statistical Society Series C: Applied Statistics, vol. 72, no. 4, pp. 912–936, 2023.
  22. L. Tu, A. Talbot, N. M. Gallagher, and D. E. Carlson, “Supervising the decoder of variational autoencoders to improve scientific utility,” IEEE Transactions on Signal Processing, vol. 70, pp. 5954–5966, 2022.
  23. E. Bair, T. Hastie, D. Paul, and R. Tibshirani, “Prediction by Supervised Principal Components,” Journal of the American Statistical Association, vol. 101, no. 473, 2006.
  24. C. Giessing, G. R. Fink, F. Rösler, and C. M. Thiel, “fmri data predict individual differences of behavioral effects of nicotine: a partial least square analysis,” Journal of Cognitive Neuroscience, vol. 19, no. 4, pp. 658–670, 2007.
  25. X. Zhuang, Z. Yang, and D. Cordes, “A technical review of canonical correlation analysis for neuroscience applications,” Human brain mapping, vol. 41, no. 13, pp. 3807–3833, 2020.
  26. A. Bhattacharya and D. B. Dunson, “Sparse bayesian infinite factor models,” Biometrika, vol. 98, no. 2, pp. 291–306, 2011.
  27. J. Bernardo, M. Bayarri, J. Berger, A. Dawid, D. Heckerman, A. Smith, and M. West, “Bayesian factor regression models in the “large p, small n” paradigm,” Bayesian statistics, vol. 7, pp. 733–742, 2003.
  28. J. Besag, “Statistical analysis of non-lattice data,” Journal of the Royal Statistical Society Series D: The Statistician, vol. 24, no. 3, pp. 179–195, 1975.
  29. D. P. Kingma, “Auto-encoding variational bayes,” arXiv preprint arXiv:1312.6114, 2013.
  30. D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational inference: A review for statisticians,” Journal of the American statistical Association, vol. 112, no. 518, pp. 859–877, 2017.
  31. L. Bottou, “Large-scale machine learning with stochastic gradient descent,” Proceedings of COMPSTAT, pp. 177–186, 2010.
  32. S. Yu, K. Yu, V. Tresp, H.-P. Kriegel, and M. Wu, “Supervised probabilistic principal component analysis,” in International Conference on Knowledge Discovery and Data Mining, 2006, pp. 464–473.
  33. M. Greenacre, P. J. Groenen, T. Hastie, A. I. d’Enza, A. Markos, and E. Tuzhilina, “Principal component analysis,” Nature Reviews Methods Primers, vol. 2, no. 1, p. 100, 2022.
  34. K. Y. Yeung and W. L. Ruzzo, “Principal component analysis for clustering gene expression data,” Bioinformatics, vol. 17, no. 9, pp. 763–774, 2001.
  35. D. Zhang, R. Dey, and S. Lee, “Fast and robust ancestry prediction using principal component analysis,” Bioinformatics, vol. 36, no. 11, pp. 3439–3446, 2020.
  36. C. Lemaréchal, “Lagrangian relaxation,” in Computational combinatorial optimization.   Springer, 2001, pp. 112–156.
  37. S. Kapoor, W. J. Maddox, P. Izmailov, and A. G. Wilson, “On uncertainty, tempering, and data augmentation in bayesian classification,” Advances in Neural Information Processing Systems, vol. 35, pp. 18 211–18 225, 2022.
  38. D. J. Cutler, K. Jodeiry, A. J. Bass, and M. P. Epstein, “The quantitative genetics of human disease: 1 foundations,” ArXiv, 2023.
  39. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
  40. N. M. Gallagher, K. Ulrich, A. Talbot, K. Dzirasa, L. Carin, and D. E. Carlson, “Cross-Spectral Factor Analysis,” Advances in neural information processing systems, pp. 6842–6852, 2017.
  41. D. Carlson, S. Kumar, and K. Dzirasa, “Multi-region local field potential recordings during a tail-suspension test,” Duke Research Data Repository, 2023.
  42. A. Clauset, C. R. Shalizi, and M. E. Newman, “Power-law distributions in empirical data,” SIAM review, vol. 51, no. 4, pp. 661–703, 2009.
  43. J. T. McCracken, E. Anagnostou, C. Arango, G. Dawson, T. Farchione, V. Mantua, J. McPartland, D. Murphy, G. Pandina, J. Veenstra-VanderWeele et al., “Drug development for autism spectrum disorder (asd): progress, challenges, and future directions,” European Neuropsychopharmacology, vol. 48, pp. 3–31, 2021.
  44. K. Walder-Christensen, K. Abdelaal, H. Klein, G. E. Thomas, N. M. Gallagher, A. Talbot, E. Adamson, A. Rawls, D. Hughes, S. D. Mague et al., “Electome network factors: Capturing emotional brain networks related to health and disease,” Cell Reports Methods, vol. 4, no. 1, 2024.
  45. H. Cai, J. Liu, and W. Yin, “Learned robust pca: A scalable deep unfolding approach for high-dimensional outlier detection,” Advances in Neural Information Processing Systems, vol. 34, pp. 16 977–16 989, 2021.
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.