Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Optimal Power Grid Operations with Foundation Models (2409.02148v1)

Published 3 Sep 2024 in eess.SY, cs.AI, cs.LG, cs.SY, and math.OC

Abstract: The energy transition, crucial for tackling the climate crisis, demands integrating numerous distributed, renewable energy sources into existing grids. Along with climate change and consumer behavioral changes, this leads to changes and variability in generation and load patterns, introducing significant complexity and uncertainty into grid planning and operations. While the industry has already started to exploit AI to overcome computational challenges of established grid simulation tools, we propose the use of AI Foundation Models (FMs) and advances in Graph Neural Networks to efficiently exploit poorly available grid data for different downstream tasks, enhancing grid operations. For capturing the grid's underlying physics, we believe that building a self-supervised model learning the power flow dynamics is a critical first step towards developing an FM for the power grid. We show how this approach may close the gap between the industry needs and current grid analysis capabilities, to bring the industry closer to optimal grid operation and planning.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. International Energy Agency, “Sustainable recovery,” 2020.
  2. P. Donohoo-Vallett, N. Ryan, and R. Wiser, “On the path to 100% clean electricity.” U.S. Department of Energy, 2022.
  3. A. Bose and T. J. Overbye, “Electricity transmission system research and development: Grid operations,” 2021. In Transmission Innovation Symposium: Modernizing the U.S. Electrical Grid, U.S. Department of Energy.
  4. H. F. Hamann, T. Brunschwiler, B. Gjorgiev, L. S. A. Martins, A. Puech, A. Varbella, J. Weiss, J. Bernabe-Moreno, A. B. Massé, S. Choi, I. Foster, B.-M. Hodge, R. Jain, K. Kim, V. Mai, F. Mirallès, M. D. Montigny, O. Ramos-Leaños, H. Suprême, L. Xie, E.-N. S. Youssef, A. Zinflou, A. J. Belvi, R. J. Bessa, B. P. Bhattari, J. Schmude, and S. Sobolevsky, “A perspective on foundation models for the electric power grid,” 2024.
  5. H. Jain, B. A. Bhatti, T. Wu, B. Mather, and R. Broadwater, “Integrated transmission-and-distribution system modeling of power systems: State-of-the-art and future research directions,” Energies, vol. 14, no. 1, 2021.
  6. A. M. Brockway and L. N. Dunn, “Weathering adaptation: Grid infrastructure planning in a changing climate,” Climate Risk Management, vol. 30, p. 100256, 2020.
  7. P. J. Lagace, M. H. Vuong, and I. Kamwa, “Improving power flow convergence by newton raphson with a levenberg-marquardt method,” in 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, pp. 1–6, 2008.
  8. United States Department of Energy, “Advanced transmission technologies.” https://www.energy.gov/sites/prod/files/2021/02/f82/Advanced%20Transmission%20Technologies%20Report%20-%20final%20as%20of%2012.3%20-%20FOR%20PUBLIC.pdf, December 2020. Washington, DC 20585.
  9. K. J. Benes, J. E. Porterfield, and C. Yang, “AI for Energy: Opportunities for a Modern Grid and Clean Energy Economy,” 2024.
  10. T. W. House, “U.s. innovation to meet 2050 climate goals: Assessing initial r&d opportunities.” https://energy.mit.edu/wp-content/uploads/2023/02/US-Innovation-to-Meet-2050-Climate-Goals.pdf, November 2022.
  11. P. Denholm, P. Brown, W. Cole, et al., “Examining supply-side options to achieve 100% clean electricity by 2035.” https://www.nrel.gov/docs/fy22osti/81644.pdf, 2022. Golden, CO: National Renewable Energy Laboratory. NREL/TP-6A40-81644.
  12. C. Daniel, J. C. Gehin, K. Laurin-Kovitz, B. Morreale, R. Stevens, and W. Tumas, “Advanced research directions on ai for energy: Report on winter 2023 workshops.” https://www.anl.gov/ai/reference/ai-for-energy-report-2024, 2024.
  13. O. A. Omitaomu and H. Niu, “Artificial intelligence techniques in smart grid: A survey,” Smart Cities, vol. 4, no. 2, pp. 548–568, 2021.
  14. R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S. Bernstein, J. Bohg, A. Bosselut, E. Brunskill, E. Brynjolfsson, S. Buch, D. Card, R. Castellon, N. Chatterji, A. Chen, K. Creel, J. Q. Davis, D. Demszky, C. Donahue, M. Doumbouya, E. Durmus, S. Ermon, J. Etchemendy, K. Ethayarajh, L. Fei-Fei, C. Finn, T. Gale, L. Gillespie, K. Goel, N. Goodman, S. Grossman, N. Guha, T. Hashimoto, P. Henderson, J. Hewitt, D. E. Ho, J. Hong, K. Hsu, J. Huang, T. Icard, S. Jain, D. Jurafsky, P. Kalluri, S. Karamcheti, G. Keeling, F. Khani, O. Khattab, P. W. Koh, M. Krass, R. Krishna, R. Kuditipudi, A. Kumar, F. Ladhak, M. Lee, T. Lee, J. Leskovec, I. Levent, X. L. Li, X. Li, T. Ma, A. Malik, C. D. Manning, S. Mirchandani, E. Mitchell, Z. Munyikwa, S. Nair, A. Narayan, D. Narayanan, B. Newman, A. Nie, J. C. Niebles, H. Nilforoshan, J. Nyarko, G. Ogut, L. Orr, I. Papadimitriou, J. S. Park, C. Piech, E. Portelance, C. Potts, A. Raghunathan, R. Reich, H. Ren, F. Rong, Y. Roohani, C. Ruiz, J. Ryan, C. Ré, D. Sadigh, S. Sagawa, K. Santhanam, A. Shih, K. Srinivasan, A. Tamkin, R. Taori, A. W. Thomas, F. Tramèr, R. E. Wang, W. Wang, B. Wu, J. Wu, Y. Wu, S. M. Xie, M. Yasunaga, J. You, M. Zaharia, M. Zhang, T. Zhang, X. Zhang, Y. Zhang, L. Zheng, K. Zhou, and P. Liang, “On the opportunities and risks of foundation models.” https://arxiv.org/abs/2108.07258, 2022.
  15. J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun, “Graph neural networks: A review of methods and applications,” AI Open, vol. 1, pp. 57–81, 2020.
  16. W. Liao, B. Bak-Jensen, J. Pillai, Y. Wang, and Y. Wang, “A review of graph neural networks and their applications in power systems,” Journal of Modern Power Systems and Clean Energy, vol. 10, pp. 345–360, Mar. 2022.
  17. J. Pathak, S. Subramanian, P. Harrington, S. Raja, A. Chattopadhyay, M. Mardani, T. Kurth, D. Hall, Z. Li, K. Azizzadenesheli, P. Hassanzadeh, K. Kashinath, and A. Anandkumar, “Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators.” https://arxiv.org/abs/2202.11214, 2022.
  18. K. Bi, L. Xie, H. Zhang, X. Chen, X. Gu, and Q. Tian, “Accurate medium-range global weather forecasting with 3d neural networks,” Nature, vol. 619, pp. 1–6, 07 2023.
  19. X. Han, Z. Zhang, N. Ding, Y. Gu, X. Liu, Y. Huo, J. Qiu, Y. Yao, A. Zhang, L. Zhang, W. Han, M. Huang, Q. Jin, Y. Lan, Y. Liu, Z. Liu, Z. Lu, X. Qiu, R. Song, J. Tang, J.-R. Wen, J. Yuan, W. X. Zhao, and J. Zhu, “Pre-trained models: Past, present and future,” AI Open, vol. 2, pp. 225–250, 2021.
  20. M. Farivar and S. H. Low, “Branch flow model: Relaxations and convexification—part i,” IEEE Transactions on Power Systems, vol. 28, no. 3, pp. 2554–2564, 2013.
  21. A. Mary, B. Cain, and R. O’Neill, “History of optimal power flow and formulations,” Fed. Energy Regul. Comm., vol. 1, pp. 1–36, 01 2012.
  22. L. Piloto, S. Liguori, S. Madjiheurem, M. Zgubic, S. Lovett, H. Tomlinson, S. Elster, C. Apps, and S. Witherspoon, “Canos: A fast and scalable neural ac-opf solver robust to n-1 perturbations.” https://arxiv.org/abs/2403.17660, 2024.
  23. S. Lovett, M. Zgubic, S. Liguori, S. Madjiheurem, H. Tomlinson, S. Elster, C. Apps, S. Witherspoon, and L. Piloto, “Opfdata: Large-scale datasets for ac optimal power flow with topological perturbations.” https://arxiv.org/abs/2406.07234, 2024.
  24. A. Varbella, K. Amara, B. Gjorgiev, M. El-Assady, and G. Sansavini, “Powergraph: A power grid benchmark dataset for graph neural networks.” https://arxiv.org/abs/2402.02827, 2024.
  25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.
  26. Z. Hou, X. Liu, Y. Cen, Y. Dong, H. Yang, C. Wang, and J. Tang, “Graphmae: Self-supervised masked graph autoencoders.” https://arxiv.org/abs/2205.10803, 2022.
  27. Z. Hou, Y. He, Y. Cen, X. Liu, Y. Dong, E. Kharlamov, and J. Tang, “Graphmae2: A decoding-enhanced masked self-supervised graph learner,” in Proceedings of the ACM Web Conference 2023, WWW ’23, (New York, NY, USA), p. 737–746, Association for Computing Machinery, 2023.
  28. S. Babaeinejadsarookolaee, A. Birchfield, R. D. Christie, C. Coffrin, C. DeMarco, R. Diao, M. Ferris, S. Fliscounakis, S. Greene, R. Huang, C. Josz, R. Korab, B. Lesieutre, J. Maeght, T. W. K. Mak, D. K. Molzahn, T. J. Overbye, P. Panciatici, B. Park, J. Snodgrass, A. Tbaileh, P. V. Hentenryck, and R. Zimmerman, “The power grid library for benchmarking ac optimal power flow algorithms,” 2021.
  29. L. Thurner, A. Scheidler, F. Schäfer, J. Menke, J. Dollichon, F. Meier, S. Meinecke, and M. Braun, “pandapower — an open-source python tool for convenient modeling, analysis, and optimization of electric power systems,” IEEE Transactions on Power Systems, vol. 33, pp. 6510–6521, Nov 2018.
  30. C. Coffrin, R. Bent, K. Sundar, Y. Ng, and M. Lubin, “Powermodels.jl: An open-source framework for exploring power flow formulations,” in 2018 Power Systems Computation Conference (PSCC), pp. 1–8, June 2018.
  31. John Wiley & Sons, 2nd ed., 1996.
  32. Litgrid, “Litgrid has completed a year of testing with an average 52 percent increase in transmission line capacity.” https://www.litgrid.eu/index.php/naujienos/naujienos/-litgrid-baige-metus-trukusius-bandymus-elektros-perdavimo-linijos-pralaidumas-vidutiniskai-padidejo-52-procentais/32687, January 2024. Original title in Lithuanian: „Litgrid“ baigė metus trukusius bandymus: elektros perdavimo linijos pralaidumas vidutiniškai padidėjo 52 procentais.
  33. Litos Strategic Communication, “The smart grid: An introduction.” http://energy.gov/sites/prod/files/oeprod/DocumentsandMedia/DOE_SG_Book_Single_Pages(1).pdf, 2008. U.S. Department of Energy.
  34. W. F. Tinney and C. E. Hart, “Power flow solution by newton’s method,” IEEE Transactions on Power Apparatus and Systems, vol. PAS-86, no. 11, pp. 1449–1460, 1967.
  35. K. Dvijotham and D. K. Molzahn, “Error bounds on the dc power flow approximation: A convex relaxation approach,” in 2016 IEEE 55th Conference on Decision and Control (CDC), pp. 2411–2418, 2016.
  36. K. Baker, “Solutions of dc opf are never ac feasible,” in Proceedings of the Twelfth ACM International Conference on Future Energy Systems, e-Energy ’21, (New York, NY, USA), p. 264–268, Association for Computing Machinery, 2021.
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets