Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

When Digital Twin Meets 6G: Concepts, Obstacles, and Research Prospects (2409.02008v1)

Published 3 Sep 2024 in cs.NI, cs.AI, and cs.DC

Abstract: The convergence of digital twin technology and the emerging 6G network presents both challenges and numerous research opportunities. This article explores the potential synergies between digital twin and 6G, highlighting the key challenges and proposing fundamental principles for their integration. We discuss the unique requirements and capabilities of digital twin in the context of 6G networks, such as sustainable deployment, real-time synchronization, seamless migration, predictive analytic, and closed-loop control. Furthermore, we identify research opportunities for leveraging digital twin and artificial intelligence to enhance various aspects of 6G, including network optimization, resource allocation, security, and intelligent service provisioning. This article aims to stimulate further research and innovation at the intersection of digital twin and 6G, paving the way for transformative applications and services in the future.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. K. B. Letaief, Y. Shi, J. Lu, and J. Lu, “Edge artificial intelligence for 6G: Vision, enabling technologies, and applications,” IEEE J. Sel. Areas Commun., vol. 40, no. 1, pp. 5–36, Jan. 2022.
  2. J. Deng, L. Yue, H. Yang, and G. Liu, “A digital twin network approach for 6G wireless network autonomy,” in Proc. IEEE ICC Workshops, Rome, Italy, 2023, pp. 415–420.
  3. X. Lin, L. Kundu, C. Dick, E. Obiodu, T. Mostak, and M. Flaxman, “6G digital twin networks: From theory to practice,” IEEE Commun. Mag., vol. 61, no. 11, pp. 72–78, 2023.
  4. Z. Wang, R. Gupta, K. Han, H. Wang, A. Ganlath, N. Ammar, and P. Tiwari, “Mobility digital twin: Concept, architecture, case study, and future challenges,” IEEE Internet Things J., vol. 9, no. 18, pp. 17 452–17 467, Sep. 2022.
  5. L. U. Khan, W. Saad, D. Niyato, Z. Han, and C. S. Hong, “Digital-twin-enabled 6G: Vision, architectural trends, and future directions,” IEEE Commun. Mag., vol. 60, no. 1, pp. 74–80, Jan. 2022.
  6. Y. Dai, K. Zhang, S. Maharjan, and Y. Zhang, “Deep reinforcement learning for stochastic computation offloading in digital twin networks,” IEEE Trans. Ind. Informat., vol. 17, no. 7, pp. 4968–4977, Jul. 2021.
  7. B. Li, Y. Liu, L. Tan, H. Pan, and Y. Zhang, “Digital twin assisted task offloading for aerial edge computing and networks,” IEEE Trans. Veh. Technol., vol. 71, no. 10, pp. 10 863–10 877, Oct. 2022.
  8. T. Liu, L. Tang, W. Wang, Q. Chen, and X. Zeng, “Digital-twin-assisted task offloading based on edge collaboration in the digital twin edge network,” IEEE Internet Things J., vol. 9, no. 2, pp. 1427–1444, Jan. 2022.
  9. M. Vaezi, K. Noroozi, T. D. Todd, D. Zhao, and G. Karakostas, “Digital twin placement for minimum application request delay with data age targets,” IEEE Internet Things J., vol. 10, no. 13, pp. 11 547–11 557, Jul. 2023.
  10. J. Zheng, T. H. Luan, Y. Zhang, R. Li, Y. Hui, L. Gao, and M. Dong, “Data synchronization in vehicular digital twin network: A game theoretic approach,” IEEE Trans. Wireless Commun., vol. 22, no. 11, pp. 7635–7647, Nov. 2023.
  11. O. Chukhno, N. Chukhno, G. Araniti, C. Campolo, A. Iera, and A. Molinaro, “Placement of social digital twins at the edge for beyond 5G IoT networks,” IEEE Internet Things J., vol. 9, no. 23, pp. 23 927–23 940, Dec. 2022.
  12. Y. Lu, S. Maharjan, and Y. Zhang, “Adaptive edge association for wireless digital twin networks in 6G,” IEEE Internet Things J., vol. 8, no. 22, pp. 16 219–16 230, Nov. 2021.
  13. W. Liu, Y. Fu, Y. Guo, F. Wang, W. Sun, and Y. Zhang, “Two-timescale synchronization and migration for digital twin networks: A multi-agent deep reinforcement learning approach,” IEEE Trans. Wireless Commun., 2024, early access, doi: 10.1109/TWC.2024.3452689.
  14. Z. Liang, Y. Liu, T.-M. Lok, and K. Huang, “A two-timescale approach to mobility management for multicell mobile edge computing,” IEEE Trans. Wireless Commun., vol. 21, no. 12, pp. 10 981–10 995, Dec. 2022.
  15. N. Waqar, S. A. Hassan, A. Mahmood, K. Dev, D.-T. Do, and M. Gidlund, “Computation offloading and resource allocation in MEC-enabled integrated aerial-terrestrial vehicular networks: A reinforcement learning approach,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 11, pp. 21 478–21 491, Jun. 2022.
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.