Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

When Heterophily Meets Heterogeneous Graphs: Latent Graphs Guided Unsupervised Representation Learning (2409.00687v1)

Published 1 Sep 2024 in cs.LG, cs.AI, and cs.SI

Abstract: Unsupervised heterogeneous graph representation learning (UHGRL) has gained increasing attention due to its significance in handling practical graphs without labels. However, heterophily has been largely ignored, despite its ubiquitous presence in real-world heterogeneous graphs. In this paper, we define semantic heterophily and propose an innovative framework called Latent Graphs Guided Unsupervised Representation Learning (LatGRL) to handle this problem. First, we develop a similarity mining method that couples global structures and attributes, enabling the construction of fine-grained homophilic and heterophilic latent graphs to guide the representation learning. Moreover, we propose an adaptive dual-frequency semantic fusion mechanism to address the problem of node-level semantic heterophily. To cope with the massive scale of real-world data, we further design a scalable implementation. Extensive experiments on benchmark datasets validate the effectiveness and efficiency of our proposed framework. The source code and datasets have been made available at https://github.com/zxlearningdeep/LatGRL.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.