Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Score-based Generative Solver for PDE-constrained Inverse Problems with Complex Priors (2408.16626v1)

Published 29 Aug 2024 in cs.CE and math.OC

Abstract: In the field of inverse estimation for systems modeled by partial differential equations (PDEs), challenges arise when estimating high- (or even infinite-) dimensional parameters. Typically, the ill-posed nature of such problems necessitates leveraging prior information to achieve well-posedness. In most existing inverse solvers, the prior distribution is assumed to be of either Gaussian or Laplace form which, in many practical scenarios, is an oversimplification. In case the prior is complex and the likelihood model is computationally expensive (e.g., due to expensive forward models), drawing the sample from such posteriors can be computationally intractable, especially when the unknown parameter is high-dimensional. In this work, to sample efficiently, we propose a score-based diffusion model, which combines a score-based generative sampling tool with a noising and denoising process driven by stochastic differential equations. This tool is used for iterative sample generation in accordance with the posterior distribution, while simultaneously learning and leveraging the underlying information and constraints inherent in the given complex prior. A time-varying time schedule is proposed to adapt the method for posterior sampling. To expedite the simulation of non-parameterized PDEs and enhance the generalization capacity, we introduce a physics-informed convolutional neural network (CNN) surrogate for the forward model. Finally, numerical experiments, including a hyper-elastic problem and a multi-scale mechanics problem, demonstrate the efficacy of the proposed approach. In particular, the score-based diffusion model, coupled with the physics-informed CNN surrogate, effectively learns geometrical features from provided prior samples, yielding better inverse estimation results compared to the state-of-the-art techniques.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.