Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On $k$-planar Graphs without Short Cycles (2408.16085v1)

Published 28 Aug 2024 in math.CO and cs.DM

Abstract: We study the impact of forbidding short cycles to the edge density of $k$-planar graphs; a $k$-planar graph is one that can be drawn in the plane with at most $k$ crossings per edge. Specifically, we consider three settings, according to which the forbidden substructures are $3$-cycles, $4$-cycles or both of them (i.e., girth $\ge 5$). For all three settings and all $k\in{1,2,3}$, we present lower and upper bounds on the maximum number of edges in any $k$-planar graph on $n$ vertices. Our bounds are of the form $c\,n$, for some explicit constant $c$ that depends on $k$ and on the setting. For general $k \geq 4$ our bounds are of the form $c\sqrt{k}n$, for some explicit constant $c$. These results are obtained by leveraging different techniques, such as the discharging method, the recently introduced density formula for non-planar graphs, and new upper bounds for the crossing number of $2$-- and $3$-planar graphs in combination with corresponding lower bounds based on the Crossing Lemma.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube