Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

PolicyLR: A Logic Representation For Privacy Policies (2408.14830v1)

Published 27 Aug 2024 in cs.CR and cs.CL

Abstract: Privacy policies are crucial in the online ecosystem, defining how services handle user data and adhere to regulations such as GDPR and CCPA. However, their complexity and frequent updates often make them difficult for stakeholders to understand and analyze. Current automated analysis methods, which utilize natural language processing, have limitations. They typically focus on individual tasks and fail to capture the full context of the policies. We propose PolicyLR, a new paradigm that offers a comprehensive machine-readable representation of privacy policies, serving as an all-in-one solution for multiple downstream tasks. PolicyLR converts privacy policies into a machine-readable format using valuations of atomic formulae, allowing for formal definitions of tasks like compliance and consistency. We have developed a compiler that transforms unstructured policy text into this format using off-the-shelf LLMs. This compiler breaks down the transformation task into a two-stage translation and entailment procedure. This procedure considers the full context of the privacy policy to infer a complex formula, where each formula consists of simpler atomic formulae. The advantage of this model is that PolicyLR is interpretable by design and grounded in segments of the privacy policy. We evaluated the compiler using ToS;DR, a community-annotated privacy policy entailment dataset. Utilizing open-source LLMs, our compiler achieves precision and recall values of 0.91 and 0.88, respectively. Finally, we demonstrate the utility of PolicyLR in three privacy tasks: Policy Compliance, Inconsistency Detection, and Privacy Comparison Shopping.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.