Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 32 tok/s Pro
2000 character limit reached

Control-Informed Reinforcement Learning for Chemical Processes (2408.13566v2)

Published 24 Aug 2024 in eess.SY and cs.SY

Abstract: This work proposes a control-informed reinforcement learning (CIRL) framework that integrates proportional-integral-derivative (PID) control components into the architecture of deep reinforcement learning (RL) policies. The proposed approach augments deep RL agents with a PID controller layer, incorporating prior knowledge from control theory into the learning process. CIRL improves performance and robustness by combining the best of both worlds: the disturbance-rejection and setpoint-tracking capabilities of PID control and the nonlinear modeling capacity of deep RL. Simulation studies conducted on a continuously stirred tank reactor system demonstrate the improved performance of CIRL compared to both conventional model-free deep RL and static PID controllers. CIRL exhibits better setpoint-tracking ability, particularly when generalizing to trajectories outside the training distribution, suggesting enhanced generalization capabilities. Furthermore, the embedded prior control knowledge within the CIRL policy improves its robustness to unobserved system disturbances. The control-informed RL framework combines the strengths of classical control and reinforcement learning to develop sample-efficient and robust deep reinforcement learning algorithms, with potential applications in complex industrial systems.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube