Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
4 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Exploiting degeneracy in projective geometric algebra (2408.13441v2)

Published 24 Aug 2024 in math.RA and math.MG

Abstract: The last two decades, since the seminal work of Selig, has seen projective geometric algebra (PGA) gain popularity as a modern coordinate-free framework for doing classical Euclidean geometry and other Cayley-Klein geometries. This framework is based upon a degenerate Clifford algebra, and it is the purpose of this paper to delve deeper into its internal algebraic structure and extract meaningful information for the purposes of PGA. This includes exploiting the split extension structure to realise the natural decomposition of elements of this Clifford algebra into Euclidean and ideal parts. This leads to a beautiful demonstration of how Playfair's axiom for affine geometry arises from the ambient degenerate quadratic space. The highlighted split extension property of the Clifford algebra also corresponds to a splitting of the group of units and the Lie algebra of bivectors. Central to these results is that the degenerate Clifford algebra $\mathrm{Cl}(V)$ is isomorphic to the twisted trivial extension $\mathrm{Cl}(V/\mathbb Fe_0)\ltimes_\alpha\mathrm{Cl}(V/\mathbb Fe_0)$, where $e_0$ is a degenerate vector and $\alpha$ is the grade-involution.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.