Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
4 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Null Polarities as Generators of the Projective Group (1406.0278v1)

Published 2 Jun 2014 in math.MG and math.AG

Abstract: It is well-known that the group of regular projective transformations of $\mathbb{P}3(\mathbb{R})$ is isomorphic to the group of projective automorphisms of Klein's quadric $M_24\subset\mathbb{P}5(\mathbb{R})$. We introduce the Clifford algebra $\mathcal{C}\ell_{(3,3)}$ constructed over the quadratic space $\mathbb{R}{(3,3)}$ and describe how points on Klein's quadric are embedded as null vectors, {\it i.e.}, grade-$1$ elements squaring to zero. Furthermore, we discuss how geometric entities from Klein's model can be transferred to this homogeneous Clifford algebra model. Automorphic collineations of Klein's quadric can be described by the action of the so called sandwich operator applied to vectors $\mathfrak{v}\in\bigwedge1 V$. Vectors correspond to null polarities in $\mathbb{P}3(\mathbb{R})$. We introduce a factorization algorithm. With the help of this algorithm we are able to factorize an arbitrary versor $\mathfrak{g}\in\mathcal{C}\ell_{(3,3)}$ into a set of non-commuting vectors $\mathfrak{v}_i\in\bigwedge1 V,\,i=1,\dots, k,\, 1\leq k\leq 6$ corresponding to null polarities with $\mathfrak{g}=\mathfrak{v}_1\dots\mathfrak{v}_k$. Thus, we present a method to factorize every collineation in $\mathbb{P}5(\mathbb{R})$ that is induced by a projective transformation acting on $\mathbb{P}3(\mathbb{R})$ into a set of at most six involutoric automorphic collineations of Klein's quadric corresponding to null polarities respectively skew-symmetric $4 \times 4$ matrices. Moreover, we give an outlook for Lie's sphere geometry, i.e., the homogeneous Clifford algebra model constructed with the quadratic form corresponding to Lie's quadric $L_1{n+1}\subset\mathbb{P}{n+2}(\mathbb{R})$. Keywords: Clifford algebra, line geometry, Klein's quadric, null polarity, factorization

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.