Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Action of $\mathfrak{osp}(1|2n)$ on polynomials tensor $\mathbb{C}^{0|2n}$ (2408.12324v2)

Published 22 Aug 2024 in math.RT

Abstract: For each positive integer $n$, the basic classical complex Lie superalgebra $\mathfrak{osp}(1|2n)$ has a unique equivalence class of infinite-dimensional completely-pointed modules, those weight modules with one-dimensional weight spaces. The polynomials $\mathbb{C}[x_{1},x_{2}, \ldots, x_{n}]$ in $n$ indeterminates is a choice representative. In the case $n > 1$, tensoring polynomials with the natural $\mathfrak{osp}(1|2n)$-module $\mathbb{C}{1|2n}$ gives rise to a tensor product representation $V = \mathbb{C}[x_{1},x_{2}, \ldots, x_{n}] \otimes \mathbb{C}{1|2n}$ of $\mathfrak{osp}(1|2n)$ that decomposes into two irreducible summands. These summands are understood through automorphisms of $V$ that we determine as intertwining operators describing the first summand as an isomorphic copy of $\mathbb{C}[x_{1},x_{2}, \ldots, x_{n}]$ and the second summand as $\mathbb{C}[x_{1},x_{2}, \ldots, x_{n}] \otimes \mathbb{C}{2n}$, which does not have a natural $\mathfrak{osp}(1|2n)$-module structure and is not a paraboson Fock space with known bases. We present the intertwining operators as infinite diagonal block matrices of arrowhead matrices and give bases, along with formulas for the action of the odd root vectors (which generate $\mathfrak{osp}(1|2n)$) on these bases, for each of these conjugated oscillator realizations. We also revisit an expected difference: The decomposition of $\mathbb{C}[x] \otimes \mathbb{C}{1|2}$ yields three irreducible summands instead of two.

Summary

We haven't generated a summary for this paper yet.