Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Representations of the Lie Superalgebra $\mathfrak{osp}(1|2n)$ with Polynomial Bases (1912.06488v4)

Published 13 Dec 2019 in math.RT, math-ph, math.CO, and math.MP

Abstract: We study a particular class of infinite-dimensional representations of $\mathfrak{osp}(1|2n)$. These representations $L_n(p)$ are characterized by a positive integer $p$, and are the lowest component in the $p$-fold tensor product of the metaplectic representation of $\mathfrak{osp}(1|2n)$. We construct a new polynomial basis for $L_n(p)$ arising from the embedding $\mathfrak{osp}(1|2np) \supset \mathfrak{osp}(1|2n)$. The basis vectors of $L_n(p)$ are labelled by semi-standard Young tableaux, and are expressed as Clifford algebra valued polynomials with integer coefficients in $np$ variables. Using combinatorial properties of these tableau vectors it is deduced that they form indeed a basis. The computation of matrix elements of a set of generators of $\mathfrak{osp}(1|2n)$ on these basis vectors requires further combinatorics, such as the action of a Young subgroup on the horizontal strips of the tableau.

Summary

We haven't generated a summary for this paper yet.