Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Reasoning Factual Knowledge in Structured Data with Large Language Models (2408.12188v1)

Published 22 Aug 2024 in cs.CL and cs.AI

Abstract: LLMs have made remarkable progress in various natural language processing tasks as a benefit of their capability to comprehend and reason with factual knowledge. However, a significant amount of factual knowledge is stored in structured data, which possesses unique characteristics that differ from the unstructured texts used for pretraining. This difference can introduce imperceptible inference parameter deviations, posing challenges for LLMs in effectively utilizing and reasoning with structured data to accurately infer factual knowledge. To this end, we propose a benchmark named StructFact, to evaluate the structural reasoning capabilities of LLMs in inferring factual knowledge. StructFact comprises 8,340 factual questions encompassing various tasks, domains, timelines, and regions. This benchmark allows us to investigate the capability of LLMs across five factual tasks derived from the unique characteristics of structural facts. Extensive experiments on a set of LLMs with different training strategies reveal the limitations of current LLMs in inferring factual knowledge from structured data. We present this benchmark as a compass to navigate the strengths and weaknesses of LLMs in reasoning with structured data for knowledge-sensitive tasks, and to encourage advancements in related real-world applications. Please find our code at https://github.com/EganGu/StructFact.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets