Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Types of dynamical behavior in a quasiperiodic mosaic lattice (2408.11765v2)

Published 21 Aug 2024 in cond-mat.dis-nn and quant-ph

Abstract: Quasiperiodic mosaic systems with the quasiperiodic potential being added periodically with a fixed lattice interval have attracted significant attention due to their peculiar spectral properties with exactly known mobility edges, which separate localized from delocalized states. These mobility edges do not vanish even in the region of large quasiperiodic potential strength, although the width of the energy window of extended states decreases with the increase in potential strength and thus becomes very narrow in the limit of strong quasiperiodic disorder. In this paper, we study the dynamics of a quasiperiodic mosaic lattice and unravel its peculiar dynamical properties. By scrutinizing the expansion dynamics of wave packet and the evolution of density distribution, we unveil that the long-time density distribution displays obviously different behaviors at odd and even sites in the region of large quasiperiodic potential strength. Particularly, the timescale of dynamics exhibits an inverse relationship with the quasiperiodic potential strength. To understand these behaviors, we derive an effective Hamiltonian in the large quasiperiodic potential strength region, which is composed of decoupled Hamiltonians defined on the odd and even sites, respectively. While all eigenstates of the effective Hamiltonian defined on even sites are localized, the eigenstates of effective Hamiltonian defined on odd sites include both localized and extended eigenstates. Our results suggest that the effective Hamiltonian can describe the dynamical behaviors well in the large quasiperiodic potential strength region and provides an intuitive framework for understanding the peculiar dynamical behaviors in the quasiperiodic mosaic lattice.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com