Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 76 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Multi-Attribute Preferences: A Transfer Learning Approach (2408.10558v1)

Published 20 Aug 2024 in stat.ME

Abstract: This contribution introduces a novel statistical learning methodology based on the Bradley-Terry method for pairwise comparisons, where the novelty arises from the method's capacity to estimate the worth of objects for a primary attribute by incorporating data of secondary attributes. These attributes are properties on which objects are evaluated in a pairwise fashion by individuals. By assuming that the main interest of practitioners lies in the primary attribute, and the secondary attributes only serve to improve estimation of the parameters underlying the primary attribute, this paper utilises the well-known transfer learning framework. To wit, the proposed method first estimates a biased worth vector using data pertaining to both the primary attribute and the set of informative secondary attributes, which is followed by a debiasing step based on a penalised likelihood of the primary attribute. When the set of informative secondary attributes is unknown, we allow for their estimation by a data-driven algorithm. Theoretically, we show that, under mild conditions, the $\ell_\infty$ and $\ell_2$ rates are improved compared to fitting a Bradley-Terry model on just the data pertaining to the primary attribute. The favourable (comparative) performance under more general settings is shown by means of a simulation study. To illustrate the usage and interpretation of the method, an application of the proposed method is provided on consumer preference data pertaining to a cassava derived food product: eba. An R package containing the proposed methodology can be found on xhttps://CRAN.R-project.org/package=BTTL.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube