Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DataVisT5: A Pre-trained Language Model for Jointly Understanding Text and Data Visualization (2408.07401v2)

Published 14 Aug 2024 in cs.CL, cs.AI, and cs.DB

Abstract: Data visualization (DV) is the fundamental and premise tool to improve the efficiency in conveying the insights behind the big data, which has been widely accepted in existing data-driven world. Task automation in DV, such as converting natural language queries to visualizations (i.e., text-to-vis), generating explanations from visualizations (i.e., vis-to-text), answering DV-related questions in free form (i.e. FeVisQA), and explicating tabular data (i.e., table-to-text), is vital for advancing the field. Despite their potential, the application of pre-trained LLMs (PLMs) like T5 and BERT in DV has been limited by high costs and challenges in handling cross-modal information, leading to few studies on PLMs for DV. We introduce DataVisT5, a novel PLM tailored for DV that enhances the T5 architecture through a hybrid objective pre-training and multi-task fine-tuning strategy, integrating text and DV datasets to effectively interpret cross-modal semantics. Extensive evaluations on public datasets show that DataVisT5 consistently outperforms current state-of-the-art models on various DV-related tasks. We anticipate that DataVisT5 will not only inspire further research on vertical PLMs but also expand the range of applications for PLMs.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Zhuoyue Wan (5 papers)
  2. Yuanfeng Song (27 papers)
  3. Shuaimin Li (6 papers)
  4. Chen Jason Zhang (25 papers)
  5. Raymond Chi-Wing Wong (29 papers)
Citations (1)