Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
60 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
8 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Visually-augmented pretrained language models for NLP tasks without images (2212.07937v2)

Published 15 Dec 2022 in cs.CL

Abstract: Although pre-trained LLMs~(PLMs) have shown impressive performance by text-only self-supervised training, they are found lack of visual semantics or commonsense. Existing solutions often rely on explicit images for visual knowledge augmentation (requiring time-consuming retrieval or generation), and they also conduct the augmentation for the whole input text, without considering whether it is actually needed in specific inputs or tasks. To address these issues, we propose a novel \textbf{V}isually-\textbf{A}ugmented fine-tuning approach that can be generally applied to various PLMs or NLP tasks, \textbf{W}ithout using any retrieved or generated \textbf{I}mages, namely \textbf{VAWI}. Experimental results show that our approach can consistently improve the performance of BERT, RoBERTa, BART, and T5 at different scales, and outperform several competitive baselines on ten tasks. Our codes and data are publicly available at~\url{https://github.com/RUCAIBox/VAWI}.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Hangyu Guo (14 papers)
  2. Kun Zhou (217 papers)
  3. Wayne Xin Zhao (196 papers)
  4. Qinyu Zhang (26 papers)
  5. Ji-Rong Wen (299 papers)
Citations (8)