Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Method with Batching for Stochastic Finite-Sum Variational Inequalities in Non-Euclidean Setting (2408.06728v2)

Published 13 Aug 2024 in math.OC

Abstract: Variational inequalities are a universal optimization paradigm that incorporate classical minimization and saddle point problems. Nowadays more and more tasks require to consider stochastic formulations of optimization problems. In this paper, we present an analysis of a method that gives optimal convergence estimates for monotone stochastic finite-sum variational inequalities. In contrast to the previous works, our method supports batching, does not lose the oracle complexity optimality and uses an arbitrary Bregman distance to take into account geometry of the problem. Paper provides experimental confirmation to algorithm's effectiveness.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.