Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LUT Tensor Core: A Software-Hardware Co-Design for LUT-Based Low-Bit LLM Inference (2408.06003v2)

Published 12 Aug 2024 in cs.AR and cs.LG

Abstract: As LLM inference continues to demand increasing computational resources, there is a rapidly growing trend toward using low-bit weights to reduce memory footprint and improve inference efficiency. However, low-bit LLMs introduce the need for mixed-precision general matrix multiplication (mpGEMM), which involves multiplying low-precision weights with higher-precision activations - a critical yet under-explored operation. Current hardware lacks native support for mpGEMM, leading to inefficient dequantization-based implementations. To address this, we explore a lookup table (LUT)-based approach to accelerate mpGEMM. While conventional LUT implementations fall short in performance and flexibility, we propose LUT Tensor Core, a software-hardware co-designed solution optimized for low-bit LLM inference. On the software side, we introduce operator fusion and table symmetrization techniques to optimize LUT generation and storage. On the hardware side, LUT Tensor Core adopts an elongated tiling shape to maximize table reuse and employs a bit-serial architecture to flexibly support a variety of precision combinations. Additionally, we design an end-to-end compilation stack with custom instructions to enable efficient code generation and optimization for LUT-based mpGEMM. Experimental results on low-bit LLMs such as BitNet and LLaMA demonstrate that LUT Tensor Core delivers over an order-of-magnitude improvement in both compute density and energy efficiency.

Citations (1)

Summary

We haven't generated a summary for this paper yet.