Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Seg-CycleGAN : SAR-to-optical image translation guided by a downstream task (2408.05777v1)

Published 11 Aug 2024 in cs.CV, cs.AI, and eess.IV

Abstract: Optical remote sensing and Synthetic Aperture Radar(SAR) remote sensing are crucial for earth observation, offering complementary capabilities. While optical sensors provide high-quality images, they are limited by weather and lighting conditions. In contrast, SAR sensors can operate effectively under adverse conditions. This letter proposes a GAN-based SAR-to-optical image translation method named Seg-CycleGAN, designed to enhance the accuracy of ship target translation by leveraging semantic information from a pre-trained semantic segmentation model. Our method utilizes the downstream task of ship target semantic segmentation to guide the training of image translation network, improving the quality of output Optical-styled images. The potential of foundation-model-annotated datasets in SAR-to-optical translation tasks is revealed. This work suggests broader research and applications for downstream-task-guided frameworks. The code will be available at https://github.com/NPULHH/

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com