Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TSGAN: An Optical-to-SAR Dual Conditional GAN for Optical based SAR Temporal Shifting (2401.00440v2)

Published 31 Dec 2023 in cs.CV and eess.IV

Abstract: In contrast to the well-investigated field of SAR-to-Optical translation, this study explores the lesser-investigated domain of Optical-to-SAR translation, a challenging field due to the ill-posed nature of this translation. The complexity arises as a single optical data can have multiple SAR representations based on the SAR viewing geometry. We propose a novel approach, termed SAR Temporal Shifting, which inputs an optical data from the desired timestamp along with a SAR data from a different temporal point but with a consistent viewing geometry as the expected SAR data, both complemented with a change map of optical data during the intervening period. This model modifies the SAR data based on the changes observed in optical data to generate the SAR data for the desired timestamp. Our model, a dual conditional Generative Adversarial Network (GAN), named Temporal Shifting GAN (TSGAN), incorporates a siamese encoder in both the Generator and the Discriminator. To prevent the model from overfitting on the input SAR data, we employed a change weighted loss function. Our approach surpasses traditional translation methods by eliminating the GAN's fiction phenomenon, particularly in unchanged regions, resulting in higher SSIM and PSNR in these areas. Additionally, modifications to the Pix2Pix architecture and the inclusion of attention mechanisms have enhanced the model's performance on all regions of the data. This research paves the way for leveraging legacy optical datasets, the most abundant and longstanding source of Earth imagery data, extending their use to SAR domains and temporal analyses. To foster further research, we provide the code, datasets used in our study, and a framework for generating paired SAR-Optical datasets for new regions of interest. These resources are available on github.com/moienr/TemporalGAN

Definition Search Book Streamline Icon: https://streamlinehq.com
References (61)
  1. J. Fan and C. Liu, “Multitask gans for oil spill classification and semantic segmentation based on sar images,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 16, pp. 2532–2546, 2023.
  2. F. Zhu, C. Wang, B. Zhu, C. Sun, and C. Qi, “An improved generative adversarial networks for remote sensing image super-resolution reconstruction via multi-scale residual block,” The Egyptian Journal of Remote Sensing and Space Science, vol. 26, no. 1, pp. 151–160, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S111098232200120X
  3. R. Zhao and Z. Shi, “Text-to-remote-sensing-image generation with structured generative adversarial networks,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1–5, 2022.
  4. S. Jozdani, D. Chen, D. Pouliot, and B. Alan Johnson, “A review and meta-analysis of generative adversarial networks and their applications in remote sensing,” International Journal of Applied Earth Observation and Geoinformation, vol. 108, p. 102734, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0303243422000605
  5. J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation using cycle-consistent adversarial networks,” in Proceedings of the IEEE international conference on computer vision, 2017, Conference Proceedings, pp. 2223–2232.
  6. H. Chen, R. Chen, and N. Li, “Attentive generative adversarial network for removing thin cloud from a single remote sensing image,” IET Image Processing, vol. 15, no. 4, pp. 856–867, 2021.
  7. J. Li, Z. Wu, Z. Hu, J. Zhang, M. Li, L. Mo, and M. Molinier, “Thin cloud removal in optical remote sensing images based on generative adversarial networks and physical model of cloud distortion,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 166, pp. 373–389, 2020.
  8. Q. Xiong, L. Di, Q. Feng, D. Liu, W. Liu, X. Zan, L. Zhang, D. Zhu, Z. Liu, X. Yao, and X. Zhang, “Deriving non-cloud contaminated sentinel-2 images with rgb and near-infrared bands from sentinel-1 images based on a conditional generative adversarial network,” Remote Sensing, vol. 13, no. 8, 2021.
  9. Y. Zhao, T. Celik, N. Liu, and H.-C. Li, “A comparative analysis of gan-based methods for sar-to-optical image translation,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1–5, 2022.
  10. S. Fu, F. Xu, and Y.-Q. Jin, “Reciprocal translation between sar and optical remote sensing images with cascaded-residual adversarial networks,” Science China Information Sciences, vol. 64, pp. 1–15, 2021.
  11. K. Doi, K. Sakurada, M. Onishi, and A. Iwasaki, “Gan-based sar-to-optical image translation with region information,” in IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium, 2020, pp. 2069–2072.
  12. X. Yang, J. Zhao, Z. Wei, N. Wang, and X. Gao, “Sar-to-optical image translation based on improved cgan,” Pattern Recognition, vol. 121, p. 108208, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0031320321003897
  13. M. Fuentes Reyes, S. Auer, N. Merkle, C. Henry, and M. Schmitt, “Sar-to-optical image translation based on conditional generative adversarial networks—optimization, opportunities and limits,” Remote Sensing, vol. 11, no. 17, 2019.
  14. Q. Xiong, L. Di, Q. Feng, D. Liu, W. Liu, X. Zan, L. Zhang, D. Zhu, Z. Liu, X. Yao, and X. Zhang, “Deriving non-cloud contaminated sentinel-2 images with rgb and near-infrared bands from sentinel-1 images based on a conditional generative adversarial network,” Remote Sensing, vol. 13, no. 8, 2021. [Online]. Available: https://www.mdpi.com/2072-4292/13/8/1512
  15. Y. He, D. Wang, N. Lai, W. Zhang, C. Meng, M. Burke, D. Lobell, and S. Ermon, “Spatial-temporal super-resolution of satellite imagery via conditional pixel synthesis,” Advances in Neural Information Processing Systems, vol. 34, pp. 27 903–27 915, 2021.
  16. J. M. Johnson and T. M. Khoshgoftaar, “Survey on deep learning with class imbalance,” Journal of Big Data, vol. 6, no. 1, 2019.
  17. M. Mirza and S. Osindero, “Conditional generative adversarial nets,” arXiv preprint arXiv:1411.1784, 2014.
  18. P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with conditional adversarial networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 1125–1134.
  19. L. Wang, X. Xu, Y. Yu, R. Yang, R. Gui, Z. Xu, and F. Pu, “Sar-to-optical image translation using supervised cycle-consistent adversarial networks,” IEEE Access, vol. 7, pp. 129 136–129 149, 2019.
  20. J.-Y. Zhu, R. Zhang, D. Pathak, T. Darrell, A. A. Efros, O. Wang, and E. Shechtman, “Toward multimodal image-to-image translation,” Advances in neural information processing systems, vol. 30, 2017.
  21. A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep convolutional generative adversarial networks,” arXiv preprint arXiv:1511.06434, 2015.
  22. X. Huang, M.-Y. Liu, S. Belongie, and J. Kautz, “Multimodal unsupervised image-to-image translation,” in Proceedings of the European conference on computer vision (ECCV), 2018, Conference Proceedings, pp. 172–189.
  23. R. Chen, W. Huang, B. Huang, F. Sun, and B. Fang, “Reusing discriminators for encoding: Towards unsupervised image-to-image translation,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 8168–8177.
  24. Y. Lin, Y. Wang, Y. Li, Y. Gao, Z. Wang, and L. Khan, “Attention-based spatial guidance for image-to-image translation,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2021, pp. 816–825.
  25. M. Schmitt, L. H. Hughes, and X. X. Zhu, “The sen1-2 dataset for deep learning in sar-optical data fusion,” arXiv preprint arXiv:1807.01569, 2018.
  26. Z. Zhou, M. M. Rahman Siddiquee, N. Tajbakhsh, and J. Liang, “Unet++: A nested u-net architecture for medical image segmentation,” in Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings 4.   Springer, 2018, Conference Proceedings, pp. 3–11.
  27. X. Li, Z. Du, Y. Huang, and Z. Tan, “A deep translation (gan) based change detection network for optical and sar remote sensing images,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 179, pp. 14–34, 2021.
  28. X. Hu, P. Zhang, Y. Ban, and M. Rahnemoonfar, “Gan-based sar and optical image translation for wildfire impact assessment using multi-source remote sensing data,” Remote Sensing of Environment, vol. 289, 2023.
  29. N. Gorelick, M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, and R. Moore, “Google earth engine: Planetary-scale geospatial analysis for everyone,” Remote Sensing of Environment, 2017. [Online]. Available: https://doi.org/10.1016/j.rse.2017.06.031
  30. Q. Wu, “geemap: A python package for interactive mapping with google earth engine,” Journal of Open Source Software, vol. 5, no. 51, p. 2305, 2020. [Online]. Available: https://doi.org/10.21105/joss.02305
  31. K. Raiyani, T. Gonçalves, L. Rato, P. Salgueiro, and J. R. Marques da Silva, “Sentinel-2 image scene classification: A comparison between sen2cor and a machine learning approach,” Remote Sensing, vol. 13, no. 2, 2021. [Online]. Available: https://www.mdpi.com/2072-4292/13/2/300
  32. J. Murfitt and C. R. Duguay, “50 years of lake ice research from active microwave remote sensing: Progress and prospects,” Remote Sensing of Environment, vol. 264, p. 112616, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0034425721003369
  33. I. H. Woodhouse, “Geometric distortions in radar images,” in Introduction to Microwave Remote Sensing.   CRC Press, 2017, pp. 281–284.
  34. R. C. Daudt, B. L. Saux, A. Boulch, and Y. Gousseau, “Urban change detection for multispectral earth observation using convolutional neural networks,” 2018.
  35. A. Munoz, M. Zolfaghari, M. Argus, and T. Brox, “Temporal shift gan for large scale video generation,” 2020.
  36. D. Donahue, “Label-conditioned next-frame video generation with neural flows,” 2019.
  37. M. Zhao, C. Cheng, Y. Zhou, X. Li, S. Shen, and C. Song, “A global dataset of annual urban extents (1992–2020) from harmonized nighttime lights,” Earth System Science Data, vol. 14, no. 2, pp. 517–534, 2022. [Online]. Available: https://essd.copernicus.org/articles/14/517/2022/
  38. S. Hafner, Y. Ban, and A. Nascetti, “Urban change detection using a dual-task siamese network and semi-supervised learning,” in IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium.   IEEE, 2022, pp. 1071–1074.
  39. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
  40. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, and S. Gelly, “An image is worth 16x16 words: Transformers for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.
  41. L. Yuan, Y. Chen, T. Wang, W. Yu, Y. Shi, Z.-H. Jiang, F. E. Tay, J. Feng, and S. Yan, “Tokens-to-token vit: Training vision transformers from scratch on imagenet,” in Proceedings of the IEEE/CVF international conference on computer vision, 2021, Conference Proceedings, pp. 558–567.
  42. N. I. Bountos, D. Michail, and I. Papoutsis, “Learning class prototypes from synthetic insar with vision transformers,” arXiv preprint arXiv:2201.03016, 2022.
  43. H. Chen, Z. Qi, and Z. Shi, “Remote sensing image change detection with transformers,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–14, 2021.
  44. L. Pang, J. Sun, Y. Chi, Y. Yang, F. Zhang, and L. Zhang, “Cd-transunet: A hybrid transformer network for the change detection of urban buildings using l-band sar images,” Sustainability, vol. 14, no. 16, 2022.
  45. O. Oktay, J. Schlemper, L. L. Folgoc, M. Lee, M. Heinrich, K. Misawa, K. Mori, S. McDonagh, N. Y. Hammerla, and B. Kainz, “Attention u-net: Learning where to look for the pancreas,” arXiv preprint arXiv:1804.03999, 2018.
  46. T. L. B. Khanh, D.-P. Dao, N.-H. Ho, H.-J. Yang, E.-T. Baek, G. Lee, S.-H. Kim, and S. B. Yoo, “Enhancing u-net with spatial-channel attention gate for abnormal tissue segmentation in medical imaging,” Applied Sciences, vol. 10, no. 17, 2020. [Online]. Available: https://www.mdpi.com/2076-3417/10/17/5729
  47. P. Zhao, J. Zhang, W. Fang, and S. Deng, “Scau-net: Spatial-channel attention u-net for gland segmentation,” Frontiers in Bioengineering and Biotechnology, vol. 8, 2020. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fbioe.2020.00670
  48. J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, Conference Proceedings, pp. 7132–7141.
  49. M. Rangzan and S. Attarchi, “Removing Stripe Noise from Satellite Images using Convolutional Neural Networks in Frequency Domain,” in EGU General Assembly Conference Abstracts, ser. EGU General Assembly Conference Abstracts, May 2022, pp. EGU22–12 575.
  50. C. H. Song, H. J. Han, and Y. Avrithis, “All the attention you need: Global-local, spatial-channel attention for image retrieval,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2023, Conference Proceedings, pp. 2754–2763.
  51. S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “Cbam: Convolutional block attention module,” in Proceedings of the European conference on computer vision (ECCV), 2018, Conference Proceedings, pp. 3–19.
  52. X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, Conference Proceedings, pp. 7794–7803.
  53. J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, and H. Lu, “Dual attention network for scene segmentation,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, Conference Proceedings, pp. 3146–3154.
  54. B. Krawczyk, “Learning from imbalanced data: open challenges and future directions,” Progress in Artificial Intelligence, vol. 5, no. 4, pp. 221–232, 2016.
  55. Z. Zhou and X. Liu, “On multi‐class cost‐sensitive learning,” Computational Intelligence, vol. 26, no. 3, pp. 232–257, 2010.
  56. T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object detection,” in Proceedings of the IEEE international conference on computer vision, 2017, Conference Proceedings, pp. 2980–2988.
  57. Z. Wang and Q. Li, “Information content weighting for perceptual image quality assessment,” IEEE Transactions on Image Processing, vol. 20, no. 5, pp. 1185–1198, 2011.
  58. Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.
  59. K. Gu, G. Zhai, X. Yang, W. Zhang, and M. Liu, “Structural similarity weighting for image quality assessment,” in 2013 IEEE International Conference on Multimedia and Expo Workshops (ICMEW), 2013, pp. 1–6.
  60. G. Ji, Z. Wang, L. Zhou, Y. Xia, S. Zhong, and S. Gong, “Sar image colorization using multidomain cycle-consistency generative adversarial network,” IEEE Geoscience and Remote Sensing Letters, vol. 18, no. 2, pp. 296–300, 2021.
  61. M. Schmitt, L. H. Hughes, M. Körner, and X. X. Zhu, “Colorizing sentinel-1 sar images using a variational autoencoder conditioned on sentinel-2 imagery,” The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLII-2, pp. 1045–1051, 2018. [Online]. Available: https://isprs-archives.copernicus.org/articles/XLII-2/1045/2018/

Summary

We haven't generated a summary for this paper yet.