Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s
GPT-5 High 12 tok/s Pro
GPT-4o 96 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 217 tok/s Pro
2000 character limit reached

Multi-User MISO with Stacked Intelligent Metasurfaces: A DRL-Based Sum-Rate Optimization Approach (2408.04837v2)

Published 9 Aug 2024 in cs.IT, eess.SP, and math.IT

Abstract: Stacked intelligent metasurfaces (SIMs) represent a novel signal processing paradigm that enables over-the-air processing of electromagnetic waves at the speed of light. Their multi-layer architecture exhibits customizable computational capabilities compared to conventional single-layer reconfigurable intelligent surfaces and metasurface lenses. In this paper, we deploy SIM to improve the performance of multi-user multiple-input single-output (MISO) wireless systems through a low complexity manner with reduced numbers of transmit radio frequency chains. In particular, an optimization formulation for the joint design of the SIM phase shifts and the transmit power allocation is presented, which is efficiently tackled via a customized deep reinforcement learning (DRL) approach that systematically explores pre-designed states of the SIM-parametrized smart wireless environment. The presented performance evaluation results demonstrate the proposed method's capability to effectively learn from the wireless environment, while consistently outperforming conventional precoding schemes under low transmit power conditions. Furthermore, the implementation of hyperparameter tuning and whitening process significantly enhance the robustness of the proposed DRL framework.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.