Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

UpLIF: An Updatable Self-Tuning Learned Index Framework (2408.04113v1)

Published 7 Aug 2024 in cs.DB, cs.LG, and math.OC

Abstract: The emergence of learned indexes has caused a paradigm shift in our perception of indexing by considering indexes as predictive models that estimate keys' positions within a data set, resulting in notable improvements in key search efficiency and index size reduction; however, a significant challenge inherent in learned index modeling is its constrained support for update operations, necessitated by the requirement for a fixed distribution of records. Previous studies have proposed various approaches to address this issue with the drawback of high overhead due to multiple model retraining. In this paper, we present UpLIF, an adaptive self-tuning learned index that adjusts the model to accommodate incoming updates, predicts the distribution of updates for performance improvement, and optimizes its index structure using reinforcement learning. We also introduce the concept of balanced model adjustment, which determines the model's inherent properties (i.e. bias and variance), enabling the integration of these factors into the existing index model without the need for retraining with new data. Our comprehensive experiments show that the system surpasses state-of-the-art indexing solutions (both traditional and ML-based), achieving an increase in throughput of up to 3.12 times with 1000 times less memory usage.

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com