Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Generative AI as a Service in 6G Edge-Cloud: Generation Task Offloading by In-context Learning (2408.02549v3)

Published 5 Aug 2024 in eess.SY and cs.SY

Abstract: Generative artificial intelligence (GAI) is a promising technique towards 6G networks, and generative foundation models such as LLMs have attracted considerable interest from academia and telecom industry. This work considers a novel edge-cloud deployment of foundation models in 6G networks. Specifically, it aims to minimize the service delay of foundation models by radio resource allocation and task offloading, i.e., offloading diverse content generation tasks to proper LLMs at the network edge or cloud. In particular, we first introduce the communication system model, i.e., allocating radio resources and calculating link capacity to support generated content transmission, and then we present the LLM inference model to calculate the delay of content generation. After that, we propose a novel in-context learning method to optimize the task offloading decisions. It utilizes LLM's inference capabilities, and avoids the difficulty of dedicated model training or fine-tuning as in conventional machine learning algorithms. Finally, the simulations demonstrate that the proposed edge-cloud deployment and in-context learning task offloading method can achieve satisfactory generation service quality without dedicated model training or fine-tuning.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube