Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

From ML to LLM: Evaluating the Robustness of Phishing Webpage Detection Models against Adversarial Attacks (2407.20361v2)

Published 29 Jul 2024 in cs.CR

Abstract: Phishing attacks attempt to deceive users into stealing sensitive information, posing a significant cybersecurity threat. Advances in ML and deep learning (DL) have led to the development of numerous phishing webpage detection solutions, but these models remain vulnerable to adversarial attacks. Evaluating their robustness against adversarial phishing webpages is essential. Existing tools contain datasets of pre-designed phishing webpages for a limited number of brands, and lack diversity in phishing features. To address these challenges, we develop PhishOracle, a tool that generates adversarial phishing webpages by embedding diverse phishing features into legitimate webpages. We evaluate the robustness of two existing models, Stack model and Phishpedia, in classifying PhishOracle-generated adversarial phishing webpages. Additionally, we study a commercial LLM, Gemini Pro Vision, in the context of adversarial attacks. We conduct a user study to determine whether PhishOracle-generated adversarial phishing webpages deceive users. Our findings reveal that many PhishOracle-generated phishing webpages evade current phishing webpage detection models and deceive users, but Gemini Pro Vision is robust to the attack. We also develop the PhishOracle web app, allowing users to input a legitimate URL, select relevant phishing features and generate a corresponding phishing webpage. All resources are publicly available on GitHub.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Aditya Kulkarni (14 papers)
  2. Vivek Balachandran (5 papers)
  3. Dinil Mon Divakaran (21 papers)
  4. Tamal Das (7 papers)
Citations (2)
X Twitter Logo Streamline Icon: https://streamlinehq.com