Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mitigating Bias in Machine Learning Models for Phishing Webpage Detection (2401.08363v1)

Published 16 Jan 2024 in cs.CR

Abstract: The widespread accessibility of the Internet has led to a surge in online fraudulent activities, underscoring the necessity of shielding users' sensitive information from cybercriminals. Phishing, a well-known cyberattack, revolves around the creation of phishing webpages and the dissemination of corresponding URLs, aiming to deceive users into sharing their sensitive information, often for identity theft or financial gain. Various techniques are available for preemptively categorizing zero-day phishing URLs by distilling unique attributes and constructing predictive models. However, these existing techniques encounter unresolved issues. This proposal delves into persistent challenges within phishing detection solutions, particularly concentrated on the preliminary phase of assembling comprehensive datasets, and proposes a potential solution in the form of a tool engineered to alleviate bias in ML models. Such a tool can generate phishing webpages for any given set of legitimate URLs, infusing randomly selected content and visual-based phishing features. Furthermore, we contend that the tool holds the potential to assess the efficacy of existing phishing detection solutions, especially those trained on confined datasets.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Aditya Kulkarni (14 papers)
  2. Vivek Balachandran (5 papers)
  3. Dinil Mon Divakaran (21 papers)
  4. Tamal Das (7 papers)