Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
60 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
8 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

S2-Attention: Hardware-Aware Context Sharding Among Attention Heads (2407.17678v5)

Published 25 Jul 2024 in cs.CL

Abstract: Sparse attention, which selectively attends to a subset of tokens in the context was supposed to be efficient. However, its theoretical reduction in FLOPs has rarely translated into wall-clock speed-up over its dense attention counterparts due to the lack of hardware-aware optimizations like FlashAttention. Meanwhile, it remains unclear whether sparse attention can maintain the model's quality at a scale of today's LLMs and how. This paper presents Sparsely-Sharded(S2) Attention, a Triton library that provides kernel optimization for sparse attention customizable at both per-head and per-context-range levels. S2-Attention enables the exploration of novel and high-performance sparse attention techniques, which we demonstrate through extensive ablations across a wide range of sparse attention designs at various model scales. From these insights, we present several basic guidelines to design sparse attention that can achieve not only practical efficiency improvements, but also strong downstream performance. To achieve high parallelization and optimized memory IO, sparse attention should shard the context heterogeneously across attention heads, where each head attends to a different subset of tokens while collectively covering the full context. Meanwhile, we find hybrid architectures combining sparse and dense attention particularly beneficial in practice. S2-Attention achieves wall-clock speedup of 8.79X, 15.87X, 25.3X compared to the strong FlashAttention-2 baseline with strong downstream performance on-par with full attention and perfect retrieval performance at a 128k context length. At inference, for 7B models, our model, with the help of our S2-Attention kernel, achieves 4.5x speed-up compared to dense counterparts. S2-Attention is released with easy-to-customize APIs for direct usage in Megatron and vLLM.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (8)
  1. Xihui Lin (5 papers)
  2. Yunan Zhang (13 papers)
  3. Suyu Ge (12 papers)
  4. Barun Patra (23 papers)
  5. Vishrav Chaudhary (45 papers)
  6. Xia Song (38 papers)
  7. Liliang Ren (18 papers)
  8. Hao Peng (291 papers)
X Twitter Logo Streamline Icon: https://streamlinehq.com

HackerNews