Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
132 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing Wireless Networks with Attention Mechanisms: Insights from Mobile Crowdsensing (2407.15483v1)

Published 22 Jul 2024 in cs.NI

Abstract: The increasing demand for sensing, collecting, transmitting, and processing vast amounts of data poses significant challenges for resource-constrained mobile users, thereby impacting the performance of wireless networks. In this regard, from a case of mobile crowdsensing (MCS), we aim at leveraging attention mechanisms in machine learning approaches to provide solutions for building an effective, timely, and secure MCS. Specifically, we first evaluate potential combinations of attention mechanisms and MCS by introducing their preliminaries. Then, we present several emerging scenarios about how to integrate attention into MCS, including task allocation, incentive design, terminal recruitment, privacy preservation, data collection, and data transmission. Subsequently, we propose an attention-based framework to solve network optimization problems with multiple performance indicators in large-scale MCS. The designed case study have evaluated the effectiveness of the proposed framework. Finally, we outline important research directions for advancing attention-enabled MCS.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com