Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Intrinsic Self-correction for Enhanced Morality: An Analysis of Internal Mechanisms and the Superficial Hypothesis (2407.15286v3)

Published 21 Jul 2024 in cs.CL

Abstract: LLMs are capable of producing content that perpetuates stereotypes, discrimination, and toxicity. The recently proposed moral self-correction is a computationally efficient method for reducing harmful content in the responses of LLMs. However, the process of how injecting self-correction instructions can modify the behavior of LLMs remains under-explored. In this paper, we explore the effectiveness of moral self-correction by answering three research questions: (1) In what scenarios does moral self-correction work? (2) What are the internal mechanisms of LLMs, e.g., hidden states, that are influenced by moral self-correction instructions? (3) Is intrinsic moral self-correction actually superficial in terms of reduced immorality in hidden states? We argue that self-correction can help LLMs find a shortcut to more morally correct output, rather than truly reducing the immorality stored in hidden states. Through empirical investigation with tasks of language generation and multi-choice question answering, we conclude:(i) LLMs exhibit good performance across both tasks, and self-correction instructions are particularly beneficial when the correct answer is already top-ranked; (ii) The morality levels in intermediate hidden states are strong indicators as to whether one instruction would be more effective than another; (iii) Based on our analysis of intermediate hidden states and task case studies of self-correction behaviors, we are first to propose the hypothesis that intrinsic moral self-correction is in fact superficial.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Guangliang Liu (10 papers)
  2. Haitao Mao (29 papers)
  3. Jiliang Tang (204 papers)
  4. Kristen Marie Johnson (6 papers)
Citations (3)