Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Precise and Efficient Orbit Prediction in LEO with Machine Learning using Exogenous Variables (2407.11026v2)

Published 3 Jul 2024 in cs.LG, astro-ph.EP, astro-ph.IM, and cs.AI

Abstract: The increasing volume of space objects in Earth's orbit presents a significant challenge for Space Situational Awareness (SSA). And in particular, accurate orbit prediction is crucial to anticipate the position and velocity of space objects, for collision avoidance and space debris mitigation. When performing Orbit Prediction (OP), it is necessary to consider the impact of non-conservative forces, such as atmospheric drag and gravitational perturbations, that contribute to uncertainty around the future position of spacecraft and space debris alike. Conventional propagator methods like the SGP4 inadequately account for these forces, while numerical propagators are able to model the forces at a high computational cost. To address these limitations, we propose an orbit prediction algorithm utilizing machine learning. This algorithm forecasts state vectors on a spacecraft using past positions and environmental variables like atmospheric density from external sources. The orbital data used in the paper is gathered from precision ephemeris data from the International Laser Ranging Service (ILRS), for the period of almost a year. We show how the use of machine learning and time-series techniques can produce low positioning errors at a very low computational cost, thus significantly improving SSA capabilities by providing faster and reliable orbit determination for an ever increasing number of space objects.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (46)
  1. ESA’s Space Debris Office, “Space debris by the numbers,” 2024, accessed January 27, 2024. [Online]. Available: "https://www.esa.int/Safety_Security/Space_Debris/Space_debris_by_the_numbers"
  2. A. Lawrence, M. L. Rawls, M. Jah, A. Boley, F. Di Vruno, S. Garrington, M. Kramer, S. Lawler, J. Lowenthal, J. McDowell, and M. McCaughrean, “The case for space environmentalism,” Nature Astronomy, vol. 6, no. 4, pp. 428–435, Apr 2022.
  3. B. Jones and R. Anderson, “A survey of symplectic and collocation methods for orbit propagation,” in 22nd AAS/AIAA Space Flight Mechanics Meeting, Charleston, SC, Jan 2012, p. 20.
  4. A. B. Poore, J. M. Aristoff, and J. T. Horwood, “Covariance and Uncertainty Realism in Space Surveillance and Tracking Working Group on Covariance Realism,” Air Force Space Command Astrodynamics Innovation Committee, Tech. Rep., June 2016.
  5. D. A. Vallado, P. Crawford, R. Hujsak, and T. S. Kelso, “Revisiting spacetrack report #3,” in AIAA/AAS Astrodynamics Specialist Conference and Exhibit, vol. 3.   AIAA, jun 2006, pp. 1984–2071.
  6. G. Long, “The impact of large constellations of satellites,” Mitre corporation, Tech. Rep., 2022, report sponsored by National Science Foundation.
  7. J. Sang, B. Li, J. Chen, P. Zhang, and J. Ning, “Analytical representations of precise orbit predictions for Earth orbiting space objects,” Advances in Space Research, vol. 59, no. 2, pp. 698–714, 2017.
  8. J. C. Bennett, J. Sang, C. H. Smith, and K. Zhang, “Improving Low-Earth Orbit Predictions Using Two-line Element Data with Bias Correction,” in Advanced Maui Optical and Space Surveillance Technologies Conference, Wailea, HI, Sep 2012, p. 46.
  9. J. F. San-Juan, I. Pérez, M. San-Martín, and E. P. Vergara, “Hybrid SGP4 orbit propagator,” Acta Astronautica, vol. 137, pp. 254–260, 2017.
  10. F. Caldas and C. Soares, “Machine learning in orbit estimation: A survey,” Acta Astronautica, vol. 220, pp. 97–107, 2024.
  11. H. Peng and X. Bai, “Comparative Evaluation of Three Machine Learning Algorithms on Improving Orbit Prediction Accuracy,” Astrodynamics, vol. 3, no. 4, pp. 325–343, 2019.
  12. ——, “Exploring Capability of Support Vector Machine for Improving Satellite Orbit Prediction Accuracy,” Journal of Aerospace Information Systems, vol. 15, no. 6, pp. 366–381, 2018.
  13. ——, “Gaussian Processes for improving orbit prediction accuracy,” Acta Astronautica, vol. 161, no. Aug., pp. 44–56, 2019.
  14. J. Pihlajasalo, H. Leppäkoski, S. Ali-Löytty, and R. Piché, “Improvement of GPS and BeiDou extended orbit predictions with CNNs,” in 2018 European Navigation Conference, ENC 2018.   Gothenburg, Sweden: Institute of Electric and Electronics Engineers (IEEE), 2018, pp. 54–59.
  15. J. F. San-Juan, I. Pérez, E. Vergara, M. Montserrat San, R. López, A. Wittig, and D. Izzo, “Hybrid SGP4 propagator based on machine-learning techniques applied to GALILEO-type orbits,” in 69th International Astronautical Congress (IAC-18).   Bremen, Germany: International Astronautical Federation (IAF), October 2018, pp. 1–5.
  16. G. Curzi, D. Modenini, and P. Tortora, “Two-line-element propagation improvement and uncertainty estimation using recurrent neural networks,” CEAS Space Journal, vol. 14, no. 1, pp. 197–204, 2022.
  17. B. Li, Y. Zhang, J. Huang, and J. Sang, “Improved orbit predictions using two-line elements through error pattern mining and transferring,” Acta Astronautica, vol. 188, no. August, pp. 405–415, 2021.
  18. B. Li, J. Huang, Y. Feng, F. Wang, and J. Sang, “A Machine Learning-Based Approach for Improved Orbit Predictions of LEO Space Debris with Sparse Tracking Data from a Single Station,” Institute of Electric and Electronics Engineers (IEEE) Transactions on Aerospace and Electronic Systems, vol. 56, no. 6, pp. 4253–4268, 2020.
  19. W. Hong, M. Chen, P. Gao, and D. Hong, “Medium- and long-term orbit prediction of satellite based on lstnet,” in 2023 15th International Conference on Computer and Automation Engineering (ICCAE), 2023, pp. 534–540.
  20. G. Acciarini, A. Güneş Baydin, and D. Izzo, “Closing the Gap Between SGP4 and High-Precision Propagation via Differentiable Programming,” arXiv e-prints, Feb. 2024.
  21. A. R. Muldoon, G. H. Elkaim, I. F. Rickard, and B. Weeden, “Improved Orbital Debris Trajectory Estimation Based on Sequential TLE Processing,” in 60th International Astronautical Congress 2009, vol. 3.   Daejeon, South Korea: International Astronautical Federation (IAF), 2009, pp. 1864–1869.
  22. J. Hartikainen, M. Seppänen, and S. Särkkä, “State-Space Inference for Non-Linear Latent Force Models with Application to Satellite Orbit Prediction,” in Proceedings of the 29th International Conference on Machine Learning.   Edinburgh, Scotland: ICML, 2012, pp. 903–910.
  23. S. Rautalin, S. Ali-Löytty, and R. Piché, “Latent force models in autonomous GNSS satellite orbit prediction,” in 2017 International Conference on Localization and GNSS, ICL-GNSS 2017.   Piscataway, New Jersey: Institute of Electric and Electronics Engineers (IEEE), 2018, pp. 1–6.
  24. J. T. Horwood, N. D. Aragon, and A. B. Poore, “Gaussian sum filters for space surveillance: Theory and simulations,” Journal of Guidance, Control, and Dynamics, vol. 34, no. 6, pp. 1839–1851, 2011.
  25. D. J. Gondelach, R. Linares, and P. M. Siew, “Atmospheric density uncertainty quantification for satellite conjunction assessment,” Journal of Guidance, Control, and Dynamics, vol. 45, no. 9, pp. 1760–1768, 2022.
  26. R. G. Rastogi and V. L. Patel, “Effect of interplanetary magnetic field on ionosphere over the magnetic equator,” Proceedings of the Indian Academy of Sciences - Section A, vol. 82, no. 4, pp. 121–141, Oct 1975.
  27. G. Lu, S. Cowley, S. Milan, D. Sibeck, R. Greenwald, and T. Moretto, “Solar wind effects on ionospheric convection: a review,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 64, no. 2, pp. 145–157, 2002.
  28. T. G. Cowling, “Coronal expansion and solar wind,” Geophysical Journal International, vol. 33, no. 1, pp. 127–128, 07 1973.
  29. M. N. Nishino, H. Hasegawa, Y. Saito, B. Lavraud, Y. Miyashita, M. Nowada, S. Kasahara, and T. Nagai, “Asymmetric deformation of the earth’s magnetosphere under low alfvén mach number solar wind: Observations and mhd simulation,” Earth, Planets and Space, vol. 74, no. 1, p. 180, Dec 2022.
  30. J. Matzka, C. Stolle, Y. Yamazaki, O. Bronkalla, and A. Morschhauser, “The geomagnetic kp index and derived indices of geomagnetic activity,” Space Weather, vol. 19, no. 5, p. e2020SW002641, 2021.
  31. R. O. Milligan, H. S. Hudson, P. C. Chamberlin, I. G. Hannah, and L. A. Hayes, “Lyman-alpha variability during solar flares over solar cycle 24 using goes-15/euvs-e,” Space Weather, vol. 18, no. 7, p. e2019SW002331, 2020.
  32. J. M. Aristoff, J. T. Horwood, and K. T. Alfriend, “On a set of j2-equinoctial orbital elements and their use for uncertainty propagation,” Celestial Mechanics and Dynamical Astronomy, vol. 133, no. 3, p. 9, Mar 2021.
  33. G. Baù, J. Hernando-Ayuso, and C. Bombardelli, “A generalization of the equinoctial orbital elements,” Celestial Mechanics and Dynamical Astronomy, vol. 133, no. 11, p. 50, Nov 2021.
  34. J. M. Picone, A. E. Hedin, D. P. Drob, and A. C. Aikin, “NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues,” Journal of Geophysical Research: Space Physics, vol. 107, no. A12, 2002.
  35. A. Kvas, T. Mayer-Gürr, S. Krauss, J. M. Brockmann, T. Schubert, W.-D. Schuh, R. Pail, T. Gruber, A. Jäggi, and U. Meyer, “The satellite-only gravity field model goco06s,” 2019, gFZ Data Services.
  36. T. SJ and L. B., “Forecasting at scale,” PeerJ Preprints 5:e3190v2, 2017.
  37. Y. Liu, T. Hu, H. Zhang, H. Wu, S. Wang, L. Ma, and M. Long, “itransformer: Inverted transformers are effective for time series forecasting,” arXiv preprint arXiv:2310.06625, 2023.
  38. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proceedings of the 31st International Conference on Neural Information Processing Systems, ser. NIPS’17.   Red Hook, NY, USA: Curran Associates Inc., 2017, p. 6000–6010.
  39. J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of deep bidirectional transformers for language understanding,” in Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT, J. Burstein, C. Doran, and T. Solorio, Eds.   Minneapolis, MN, USA: Association for Computational Linguistics, June 2019, pp. 4171–4186.
  40. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words: Transformers for image recognition at scale,” ICLR, 2021.
  41. A. Zeng, M. Chen, L. Zhang, and Q. Xu, “Are transformers effective for time series forecasting?” in Proceedings of the AAAI conference on artificial intelligence, vol. 37, no. 9, 2023, pp. 11 121–11 128.
  42. R. Ni, Z. Lin, S. Wang, and G. Fanti, “Mixture-of-linear-experts for long-term time series forecasting,” in AISTATS, May 2024.
  43. Z. Shen, H. Yang, and S. Zhang, “Optimal approximation rate of relu networks in terms of width and depth,” Journal de Mathématiques Pures et Appliquées, vol. 157, pp. 101–135, 2022.
  44. A. Pinkus, “Approximation theory of the mlp model in neural networks,” Acta Numerica, vol. 8, p. 143–195, 1999.
  45. A. L. Maas, A. Y. Hannun, A. Y. Ng et al., “Rectifier nonlinearities improve neural network acoustic models,” in ICML, vol. 30, no. 1, 2013.
  46. F. McLean, S. Lemmens, Q. Funke, and V. Braun, “Discos 3: An improved data model for esa’s database and information system characterising objects in space,” in 7th European Conference on Space Debris, Darmstadt, Germany, 04 2017.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com