Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Friedkin-Johnsen Model for Opinion Dynamics on Signed Graphs (2407.10680v2)

Published 15 Jul 2024 in cs.SI and cs.NI

Abstract: A signed graph offers richer information than an unsigned graph, since it describes both collaborative and competitive relationships in social networks. In this paper, we study opinion dynamics on a signed graph, based on the Friedkin-Johnsen model. We first interpret the equilibrium opinion in terms of a defined random walk on an augmented signed graph, by representing the equilibrium opinion of every node as a combination of all nodes' internal opinions, with the coefficient of the internal opinion for each node being the difference of two absorbing probabilities. We then quantify some relevant social phenomena and express them in terms of the $\ell_2$ norms of vectors. We also design a nearly-linear time signed Laplacian solver for assessing these quantities, by establishing a connection between the absorbing probability of random walks on a signed graph and that on an associated unsigned graph. We further study the opinion optimization problem by changing the initial opinions of a fixed number of nodes, which can be optimally solved in cubic time. We provide a nearly-linear time algorithm with error guarantee to approximately solve the problem. Finally, we execute extensive experiments on sixteen real-life signed networks, which show that both of our algorithms are effective and efficient, and are scalable to massive graphs with over 20 million nodes.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Xiaotian Zhou (13 papers)
  2. Haoxin Sun (4 papers)
  3. Wanyue Xu (15 papers)
  4. Wei Li (1122 papers)
  5. Zhongzhi Zhang (104 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com