Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finding large balanced subgraphs in signed networks (2002.00775v1)

Published 3 Feb 2020 in cs.SI

Abstract: Signed networks are graphs whose edges are labelled with either a positive or a negative sign, and can be used to capture nuances in interactions that are missed by their unsigned counterparts. The concept of balance in signed graph theory determines whether a network can be partitioned into two perfectly opposing subsets, and is therefore useful for modelling phenomena such as the existence of polarized communities in social networks. While determining whether a graph is balanced is easy, finding a large balanced subgraph is hard. The few heuristics available in the literature for this purpose are either ineffective or non-scalable. In this paper we propose an efficient algorithm for finding large balanced subgraphs in signed networks. The algorithm relies on signed spectral theory and a novel bound for perturbations of the graph Laplacian. In a wide variety of experiments on real-world data we show that our algorithm can find balanced subgraphs much larger than those detected by existing methods, and in addition, it is faster. We test its scalability on graphs of up to 34 million edges.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Bruno Ordozgoiti (12 papers)
  2. Antonis Matakos (6 papers)
  3. Aristides Gionis (81 papers)
Citations (20)

Summary

We haven't generated a summary for this paper yet.