Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LoCo: Low-Bit Communication Adaptor for Large-scale Model Training (2407.04480v2)

Published 5 Jul 2024 in cs.LG and math.OC

Abstract: To efficiently train large-scale models, low-bit gradient communication compresses full-precision gradients on local GPU nodes into low-precision ones for higher gradient synchronization efficiency among GPU nodes. However, it often degrades training quality due to compression information loss. To address this, we propose the Low-bit Communication Adaptor (LoCo), which compensates gradients on local GPU nodes before compression, ensuring efficient synchronization without compromising training quality. Specifically, LoCo designs a moving average of historical compensation errors to stably estimate concurrent compression error and then adopts it to compensate for the concurrent gradient compression, yielding a less lossless compression. This mechanism allows it to be compatible with general optimizers like Adam and sharding strategies like FSDP. Theoretical analysis shows that integrating LoCo into full-precision optimizers like Adam and SGD does not impair their convergence speed on nonconvex problems. Experimental results show that across large-scale model training frameworks like Megatron-LM and PyTorch's FSDP, LoCo significantly improves communication efficiency, e.g., improving Adam's training speed by 14% to 40% without performance degradation on LLMs like LLAMAs and MoE.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Xingyu Xie (13 papers)
  2. Zhijie Lin (30 papers)
  3. Kim-Chuan Toh (111 papers)
  4. Pan Zhou (220 papers)

Summary

We haven't generated a summary for this paper yet.