Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Communication-Efficient Distributed Blockwise Momentum SGD with Error-Feedback (1905.10936v2)

Published 27 May 2019 in cs.LG, cs.DC, math.OC, and stat.ML

Abstract: Communication overhead is a major bottleneck hampering the scalability of distributed machine learning systems. Recently, there has been a surge of interest in using gradient compression to improve the communication efficiency of distributed neural network training. Using 1-bit quantization, signSGD with majority vote achieves a 32x reduction on communication cost. However, its convergence is based on unrealistic assumptions and can diverge in practice. In this paper, we propose a general distributed compressed SGD with Nesterov's momentum. We consider two-way compression, which compresses the gradients both to and from workers. Convergence analysis on nonconvex problems for general gradient compressors is provided. By partitioning the gradient into blocks, a blockwise compressor is introduced such that each gradient block is compressed and transmitted in 1-bit format with a scaling factor, leading to a nearly 32x reduction on communication. Experimental results show that the proposed method converges as fast as full-precision distributed momentum SGD and achieves the same testing accuracy. In particular, on distributed ResNet training with 7 workers on the ImageNet, the proposed algorithm achieves the same testing accuracy as momentum SGD using full-precision gradients, but with $46\%$ less wall clock time.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Shuai Zheng (67 papers)
  2. Ziyue Huang (19 papers)
  3. James T. Kwok (65 papers)
Citations (110)