Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Probabilistic Logic Learning for Knowledge Graph Reasoning (2407.03704v1)

Published 4 Jul 2024 in cs.AI and cs.LG

Abstract: Knowledge graph (KG) reasoning is a task that aims to predict unknown facts based on known factual samples. Reasoning methods can be divided into two categories: rule-based methods and KG-embedding based methods. The former possesses precise reasoning capabilities but finds it challenging to reason efficiently over large-scale knowledge graphs. While gaining the ability to reason over large-scale knowledge graphs, the latter sacrifices reasoning accuracy. This paper aims to design a reasoning framework called Neural Probabilistic Logic Learning(NPLL) that achieves accurate reasoning on knowledge graphs. Our approach introduces a scoring module that effectively enhances the expressive power of embedding networks, striking a balance between model simplicity and reasoning capabilities. We improve the interpretability of the model by incorporating a Markov Logic Network based on variational inference. We empirically evaluate our approach on several benchmark datasets, and the experimental results validate that our method substantially enhances the accuracy and quality of the reasoning results.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Fengsong Sun (1 paper)
  2. Jinyu Wang (24 papers)
  3. Zhiqing Wei (82 papers)
  4. Xianchao Zhang (15 papers)

Summary

We haven't generated a summary for this paper yet.