Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing LR-FHSS Scalability Through Advanced Sequence Design and Demodulator Allocation (2407.03490v1)

Published 3 Jul 2024 in cs.NI

Abstract: The accelerating growth of the Internet of Things (IoT) and its integration with Low-Earth Orbit (LEO) satellites demand efficient, reliable, and scalable communication protocols. Among these, the Long-Range Frequency Hopping Spread Spectrum (LR-FHSS) modulation, tailored for LEO satellite IoT communications, sparks keen interest. This work presents a joint approach to enhancing the scalability of LR-FHSS, addressing the demand for massive connectivity. We deepen into Frequency Hopping Sequence (FHS) mechanisms within LR-FHSS, spotlighting the potential of leveraging Wide-Gap sequences. Concurrently, we introduce two novel demodulator allocation strategies, namely, Early-Decode" andEarly-Drop," to optimize the utilization of LoRa-specific gateway decoding resources. Our research further validates these findings with extensive simulations, offering a comprehensive look into the future potential of LR-FHSS scalability in IoT settings.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. J. A. Fraire, O. Iova, and F. Valois, “Space-terrestrial integrated Internet of Things: Challenges and opportunities,” IEEE Communications Magazine, 2022.
  2. M. De Sanctis, E. Cianca, G. Araniti, I. Bisio, and R. Prasad, “Satellite communications supporting Internet of remote Things,” IEEE Internet of Things J., vol. 3, no. 1, pp. 113–123, 2015.
  3. J. A. Fraire, S. Céspedes, and N. Accettura, “Direct-to-satellite IoT-a survey of the state of the art and future research perspectives: Backhauling the IoT through LEO satellites,” in International Conference on Ad-Hoc Networks and Wireless.   Springer, 2019, pp. 241–258.
  4. S. Herrería-Alonso, M. Rodríguez-Pérez, R. Rodríguez-Rubio, and F. Pérez-Fontán, “Improving uplink scalability of lora-based direct-to-satellite iot networks,” IEEE Internet of Things J., 2023.
  5. L. Alliance, “LoRaWAN 1.0. 3 specification,” Technical Specification, 2018.
  6. Semtech, “LoRaWAN® protocol expands network capacity with new long range – frequency hopping spread spectrum technology,” 11 2020, accessed: 2023-10-17. [Online]. Available: https://tinyurl.com/2s3ue7e7
  7. M. A. Ullah, K. Mikhaylov, and H. Alves, “Analysis and simulation of LoRaWAN LR-FHSS for direct-to-satellite scenario,” IEEE Wireless Communications Letters, vol. 11, no. 3, pp. 548–552, 2021.
  8. G. Boquet, P. Tuset-Peiró, F. Adelantado, T. Watteyne, and X. Vilajosana, “LR-FHSS: Overview and performance analysis,” IEEE Communications Magazine, vol. 59, no. 3, pp. 30–36, 2021.
  9. A. Maleki, H. H. Nguyen, E. Bedeer, and R. Barton, “D2D-aided LoRaWAN LR-FHSS in direct-to-satellite IoT networks,” arXiv preprint arXiv:2212.04331, 2022.
  10. A. Maleki, H. H. Nguyen, and R. Barton, “Outage probability analysis of LR-FHSS in satellite IoT networks,” IEEE Communications Letters, vol. 27, no. 3, pp. 946–950, 2022.
  11. J. A. Fraire, A. Guitton, and O. Iova, “Recovering headerless frames in LR-FHSS,” arXiv preprint arXiv:2306.08360, 2023.
  12. S. Jung, S. Jeong, J. Kang, J. G. Ryu, and J. Kang, “Transceiver design and performance analysis for LR-FHSS-based direct-to-satellite IoT,” arXiv preprint arXiv:2305.13779, 2023.
  13. J. Bao and L. Ji, “Frequency hopping sequences with optimal partial hamming correlation,” IEEE Transactions on Information Theory, vol. 62, no. 6, pp. 3768–3783, 2016.
  14. G. Ge, Y. Miao, and Z. Yao, “Optimal frequency hopping sequences: Auto-and cross-correlation properties,” IEEE transactions on information theory, vol. 55, no. 2, pp. 867–879, 2009.
  15. D. Peng and P. Fan, “Lower bounds on the hamming auto and cross correlations of frequency-hopping sequences,” IEEE Transactions on Information Theory, vol. 50, no. 9, pp. 2149–2154, 2004.
  16. P. Li, C. Fan, Y. Yang, and Y. Wang, “New bounds on wide-gap frequency-hopping sequences,” IEEE Communications Letters, vol. 23, no. 6, pp. 1050–1053, 2019.
  17. Z. Huaqing, “Design and performance analysis of frequency hopping sequences with given minimum gap,” in 2010 International Conference on Microwave and Millimeter Wave Technology.   IEEE, 2010, pp. 1271–1274.
  18. L. Bin, “One-coincidence sequences with specified distance between adjacent symbols for frequency-hopping multiple access,” IEEE Transactions on Communications, vol. 45, no. 4, pp. 408–410, 1997.
  19. L. Guan, Z. Li, J. Si, and R. Gao, “Generation and characteristics analysis of cognitive-based high-performance wide-gap FH sequences,” IEEE Transactions on Vehicular Technology, vol. 64, no. 11, pp. 5056–5069, 2014.
  20. Semtech, “SX1301 - digital baseband chip LoRaWAN macro gateways,” Wireless & Sensing Products, Datasheet, 06 2017.
  21. R. B. Sorensen, N. Razmi, J. J. Nielsen, and P. Popovski, “Analysis of LoRaWAN uplink with multiple demodulating paths and capture effect,” in IEEE ICC (International Conference on Communications), 2019.
  22. P. K. Dalela, S. Sachdev, and V. Tyagi, “LoRaWAN network capacity for practical network planning in India,” in URSI AP-RASC (Asia-Pacific Radio Science Conference), 2019.
  23. D. Magrin, M. Capuzzo, and A. Zanella, “A thorough study of LoRaWAN performance under different parameter settings,” IEEE Internet of Things J., vol. 7, no. 1, pp. 116–127, 01 2020.
  24. A. Guitton and M. Kaneko, “Improving LoRa scalability by a recursive reuse of demodulators,” in GLOBECOM 2020-2020 IEEE Global Communications Conference.   IEEE, 2020, pp. 1–6.
  25. ——, “Multi-gateway demodulation in LoRa,” in GLOBECOM 2022-2022 IEEE Global Communications Conference.   IEEE, 2022, pp. 2008–2013.
  26. Semtech, “Application note: LR-FHSS system performance,” SX1261/62/LR1110, pp. 1–28, February 2022.
  27. T. Turletti, “GMSK in a nutshell,” Telemedia Networks and Systems Group LCS, MIT-TR, 1996.
  28. N. Sornin, M. Luis, T. Eirich, T. Kramp, and O. Hersent, “RP002-1.0.3 LoRaWAN regional parameters,” LoRa Alliance technical committee and others,” LoRa Alliance, Tech. Rep., May 2021.
  29. P. Li, C. Fan, S. Mesnager, Y. Yang, and Z. Zhou, “Constructions of optimal uniform wide-gap frequency-hopping sequences,” IEEE Transactions on Information Theory, vol. 68, no. 1, pp. 692–700, 2021.
  30. D. Sarwate, “Reed-solomon codes and the design of sequences for spread-spectrum multiple-access communications,” Reed-Solomon Codes and Their Applications, 1994.
  31. A. Lempel and H. Greenberger, “Families of sequences with optimal hamming-correlation properties,” IEEE Transactions on Information Theory, vol. 20, no. 1, pp. 90–94, 1974.
  32. K. Vogelgesang, J. A. Fraire, and H. Hermanns, “Uplink transmission probability functions for LoRa-based direct-to-satellite IoT: A case study,” in 2021 IEEE Global Communications Conference (GLOBECOM).   IEEE, 2021, pp. 01–06.
  33. T. N. González, J. L. Salamanca, S. M. Sánchez, C. A. Meza, and S. Céspedes, “Analysis of channel models for LoRa-based direct-to-satellite IoT networks served by LEO nanosatellites,” in 2021 IEEE International Conference on Communications Workshops (ICC Workshops).   IEEE, 2021, pp. 1–6.
Citations (1)

Summary

We haven't generated a summary for this paper yet.