LR-FHSS Transceiver for Direct-to-Satellite IoT Communications: Design, Implementation, and Verification (2403.14154v1)
Abstract: This paper proposes a long range-frequency hopping spread spectrum (LR-FHSS) transceiver design for the Direct-to-Satellite Internet of Things (DtS-IoT) communication system. The DtS-IoT system has recently attracted attention as a promising nonterrestrial network (NTN) solution to provide high-traffic and low-latency data transfer services to IoT devices in global coverage. In particular, this study provides guidelines for the overall DtS-IoT system architecture and design details that conform to the Long Range Wide-Area Network (LoRaWAN). Furthermore, we also detail various DtS-IoT use cases. Considering the multiple low-Earth orbit (LEO) satellites, we developed the LR-FHSS transceiver to improve system efficiency, which is the first attempt in real satellite communication systems using LR-FHSS. Moreover, as an extension of our previous work with perfect synchronization, we applied a robust synchronization scheme against the Doppler effect and co-channel interference (CCI) caused by LEO satellite channel environments, including signal detection for the simultaneous reception of numerous frequency hopping signals and an enhanced soft-output-Viterbi-algorithm (SOVA) for the header and payload receptions. Lastly, we present proof-of-concept implementation and testbeds using an application-specific integrated circuit (ASIC) chipset and a field-programmable gate array (FPGA) that verify the performance of the proposed LR-FHSS transceiver design of DtS-IoT communication systems. The laboratory test results reveal that the proposed LR-FHSS-based framework with the robust synchronization technique can provide wide coverage, seamless connectivity, and high throughput communication links for the realization of future sixth-generation (6G) networks.
- N. Sornin, M. Luis, T. Eirich, T. Kramp, and O. Hersent, “RP002-1.0.3 LoRaWAN regional parameters,” LoRa Alliance Technical Committee and others, Tech. Rep., pp. 1-94, May 2021.
- S. Jung, S. Jeong, J. Kang, J. Ryu, and J. Kang, “Transceiver design and performance analysis for LR-FHSS-based Direct-to-Satellite IoT,” IEEE Commun. Lett., vol.27, no. 12, pp. 3310-3314, Dec. 2023.
- X. Fang, W. Feng, T. Wei, Y. Chen, N. Ge, and C.-X. Wang, “5G embraces satellites for 6G ubiquitous IoT: Basic models for integrated satellite terrestrial networks,” IEEE Internet of Things Jour., vol.8, no. 18, pp. 14399-14417, Sep. 2021.
- S. Chen, Y. Liang, S. Sun, S. Kang, W. Cheng, and M. Peng, “Vision, requirements, and technology trend of 6G: How to tackle the challenges of system coverage, capacity, user data-rate and movement speed,” IEEE Wireless Commun., vol.27, no. 2, pp. 218-228, Apr. 2020.
- M. Giordani and M. Zorzi, “Non-terrestrial networks in the 6G era: Challenges and opportunities,” IEEE Netw., vol.35, no. 2, pp. 244-251, Mar. 2021.
- J. Kim, Y.-J. Choi, G. Noh, and H. Chung, “On the feasibility of remote driving applications over mmWave 5G vehicular communications: implementation and demonstration,” IEEE Trans. Veh. Technol., vol.72, no. 2, pp. 2009-2023, Feb. 2023.
- J. A. Fraire, S. Cespedes, and N. Accettura, “Direct-to-satellite IoT - a survey of the state of the art and future research perspectives: Backhauling the IoT through LEO satellites,” in Proc. Int. Conf. Ad-Hoc Netw. Wireless., pp. 241-258, Sep. 2019.
- G. Alvarez, J. A. Fraire, K. A. Hassan, S. Cespedes, and D. Pesch, “Uplink transmission policies for LoRa-based direct-to-satellite IoT,” IEEE Access, vol. 10, pp. 72687-72701, Jul. 2022.
- J. A. Fraire, S. Henn, F. Dovis, R. Garello, and G. Taricco, “Sparse satellite constellation design for LoRa-based direct-to-satellite Internet of Things,” in Proc. IEEE Global Commun. Conf., pp. 1-6, Dec. 2020.
- N. Pachler, I. del Portillo, E. F. Crawley, and B. G. Cameron, “An updated comparison of four low earth orbit satellite constellation systems to provide global broadband,” in Proc. IEEE ICC Workshops, pp. 1-7, Jun. 2021.
- 3GPP TS 36.211 v.14.3.0, “LTE; evolved universal terrestrial radio access (E-UTRA); physical channels and modulation (Release 14),” Available from: http://www.etsi.org, 2017.
- U. Raza, P. Kulkarni, and M. Sooriyabandara, “Low power wide area networks: An overview,” IEEE Commun. Surveys Tutorials, vol. 19, no. 2, pp. 855-873, Jan. 2017.
- Semtech, “LoRa modem design guide: SX1272/3/6/7/8/9,” Available from: https://www.semtech.com/, July 2020.
- Sigfox, “Sigfox Technology,” Available from: https://www.sigfox.com/, Dec. 2020.
- IEEE Standard, “IEEE standard for local and metropolitan area networks–part 15.4: Low-rate wireless personal area networks (LR-WPANs), amendment 5: Physical layer specifications for low energy, critical infrastructure monitoring networks,” Available from: DOI: 10.1109/IEEESTD.2013.6581828, 2013.
- S. Jung, G. Im, D.-H. Jung, P. Kim, J. G. Ryu, and J. Kang, “Performance analysis of DSSS- and CSS-based physical layer for IoT transmission over low-Earth orbit satellites,” ETRI J., vol. 44, no. 4, pp. 543-559, Aug. 2022.
- A. A. Doroshkin, A. M. Zadorozhny, O. N. Kus, V. Y. Prokopyev, and Y. M. Prokopyev, “Experimental study of LoRa modulation immunity to Doppler effect in cubesat radio communications,” IEEE Access, vol. 7, pp. 75721-75731, May 2019.
- S. Jung, S. Jeong, J. Kang, and J. Kang, “Marine IoT systems with space-air-sea integrated networks: Hybrid LEO and UAV edge computing,” IEEE Internet of Things Jour., vol. 10, no. 23, pp. 20498-20510, Dec. 2023.
- B. Vucetic and J. Du, “Channel modeling and simulation in satellite mobile communication systems,” IEEE J. Selected Areas Commun., vol. 10, no. 8, pp. 1209-1218, Oct. 1992.
- Semtech, “Application note: LR-FHSS system performance,” SX1261/62/ LR1110, pp. 1-28, Feb. 2022.
- G. Boquet, P. Tuset-Peiro, F. Adelantado, T. Watteyne, and X. Vilajosana, “LR-FHSS: overview and performance analysis,” IEEE Commun. Mag., vol. 59, no. 3, pp. 30-36, Mar. 2021.
- M. A. Ullah, K. Mikhaylov, and H. Alves, “Analysis and simulation of LoRaWAN LR-FHSS for direct-to-satellite scenario,” IEEE Wireless Commun. Lett., vol. 11, no. 3, pp. 548-552, Mar. 2022.
- A. Maleki, H. H. Nguyen, and R. Barton, “Outage probability analysis of LR-FHSS in satellite IoT networks,” IEEE Commun. Lett., vol. 27, no. 3, pp. 946-950, Mar. 2023.
- A. Maleki, H. H. Nguyen, E. Bedeer, and R. Barton, “Outage probability analysis of LR-FHSS and D2D-aided LR-FHSS protocols in shadowed-rice fading Direct-to-Satellite IoT networks,” IEEE Internet of Things Jour. Early Access, Nov. 2023.
- J. A. Fraire, A. Guitton, and O. Iova, “Recovering headerless frames in LR-FHSS,” arXiv:2306.08360v1, 2023.
- M. A. B. Temim, G. Ferre, and O. Seller, “An LR-FHSS receiver for a massive IoT connectivity,” Proc. IEEE Int. Symp. on Pers., Indoor and Mobile Radio Commun., pp. 1-6, Sep. 2023.
- F. Zhang, F. Yu, X. Zheng, L. Liu, and H. Ma, “DFH: Improving the reliability of LR-FHSS via dynamic frequency hopping,” Proc. IEEE Int. Conf. on Net. Prot., pp. 1-12, Oct. 2023.
- ETSI TR 103 435 v1.1.1, “System reference document (SRdoc); short range devices (SRD); technical characteristics for ultra narrow band (UNB) SRDs operating in the UHF spectrum below 1 GHz,” pp. 1-54, Feb. 2017.
- London Economics, “Nanosatellite telecommunications: A market study for IoT/M2M applications,” pp. 1-45, Aug. 2017.
- Q. Zhou, K. Zheng, L. Hou, J. Xing, and R. Xu, “Design and implementation of open LoRa for IoT,” IEEE Access, vol. 7, pp. 100649-100657, Jul. 2019.
- M. de Sanctis, E. Cianca, G. Araniti, I. Bisio, and R. Prasad, “Satellite communications supporting Internet of Remote Things,” IEEE Internet of Things Jour., vol. 3, no. 1, pp. 113-123, Feb. 2016.
- E. Casini, R. D. Gaudenzi, and A. Ginesi, “DVB-S2 modem algorithms design and performance over typical satellite channels,” Int. J. Satell. Commun. Network., vol. 22, no. 3, pp. 281-318, Jun. 2004.
- H. Zhang, X. Chu, W. Guo, and S. Wang, “Coexistence of Wi-Fi and heterogeneous small cell networks sharing unlicensed spectrum,” IEEE Commun. Mag., vol. 53, no. 3, pp. 158-164, Mar. 2015.
- G. M. A. Sessler, R. Abello, N. James, R. Madde, and E. Vassallo, “GMSK demodulator implementation for ESA deep-space missions,” Proceedings of the IEEE, vol. 95, no. 11, pp. 2132-2141, Nov. 2007.
- E. Perrins and B. Kumaraswamy, “Decision feedback detectors for SOQPSK,” IEEE Trans. Commun., vol. 57, no. 8, pp. 2359-2368, Aug. 2009.
- N. A.-Dhahir and G. Saulnier, “A high-performance reduced-complexity GMSK demodulator,” IEEE Trans. Commun., vol. 46, no. 11, pp. 1409-1412, Nov. 1998.
- CCSDS 130.0-G-4, “CCSDS report: Overview of space communications protocols,” CCSDS Secretariat National Aeronautics and Space Administration, Apr. 2023.