Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

High-order Adaptive Rank Integrators for Multi-scale Linear Kinetic Transport Equations in the Hierarchical Tucker Format (2406.19479v2)

Published 27 Jun 2024 in math.NA, cs.NA, and physics.comp-ph

Abstract: In this paper, we present a new adaptive rank approximation technique for computing solutions to the high-dimensional linear kinetic transport equation. The approach we propose is based on a macro-micro decomposition of the kinetic model in which the angular domain is discretized with a tensor product quadrature rule under the discrete ordinates method. To address the challenges associated with the curse of dimensionality, the proposed low-rank method is cast in the framework of the hierarchical Tucker decomposition. The adaptive rank integrators we propose are built upon high-order discretizations for both time and space. In particular, this work considers implicit-explicit discretizations for time and finite-difference weighted-essentially non-oscillatory discretizations for space. The high-order singular value decomposition is used to perform low-rank truncation of the high-dimensional time-dependent distribution function. The methods are applied to several benchmark problems, where we compare the solution quality and measure compression achieved by the adaptive rank methods against their corresponding full-grid methods. We also demonstrate the benefits of high-order discretizations in the proposed low-rank framework.

Citations (2)

Summary

We haven't generated a summary for this paper yet.